Skip to main content

Advertisement

Log in

Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Understanding of the emissions of coarse (PM10 ≤10 μm), fine (PM2.5 ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5–10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

UFP:

Ultrafine particle

PM:

Particulate matter

PND:

Particle number distribution

PNC:

Particle number concentration

PMC:

Particle mass concentration

SEM:

Scanning electron microscope

FIB:

Focussed ion beam

PIXE:

Particle-induced X-ray emission

EBS:

Elastic backscattering spectrometry

XPS:

X-ray photoelectron spectroscopy

IBA:

Ion beam analysis

PTFE:

Polytetrafluoroethylene

ICRP:

International Commission on Radiological Protection

VT:

Tidal volume

DF:

Deposited fraction

f :

Typical breathing frequency

MLD:

Minimum level of detection

References

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017

    Article  Google Scholar 

  • Adhami S, Abel ML, Lowe C, Watts JF (2012) Failure of a waterborne primer applied to zinc coated steel. Surf Interface Anal 44:1054–1058

    Article  Google Scholar 

  • Adhami S, Abel ML, Lowe C, Watts JF (2014) The role of the adhesion promoter in a model water-borne primer. Surf Interface Anal 46:1005–1008

    Article  Google Scholar 

  • Al-Dabbous AN, Kumar P (2014a) The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos Environ 90:113–124

    Article  Google Scholar 

  • Al-Dabbous AN, Kumar P (2014b) Number size distribution of airborne nanoparticles during summertime in Kuwait: first observations from the middle east. Environ Sci Technol 48:13634–13643

    Article  Google Scholar 

  • Azarmi F, Kumar P, Mulheron M (2014) The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J Hazard Mater 279:268–279

    Article  Google Scholar 

  • Barradas N, Jeynes C (2008) Advanced physics and algorithms in the IBA DataFurnace. Nucl Instrum Methods Phys Res Sect B 266:1875–1879

    Article  Google Scholar 

  • Batonneau Y, Bremard C, Gengembre L, Laureyns J, Le Maguer A, Le Maguer D, Perdrix E, Sobanska S (2004) Speciation of PM10 Sources of airborne nonferrous metals within the 3-km Zone of Lead/Zinc smelters. Environ Sci Technol 38:5281–5289

    Article  Google Scholar 

  • Beck CM, Geyh A, Srinivasan A, Breysse PN, Eggleston PA, Buckley TJ (2003) The impact of a building implosion on airborne particulate matter in an urban community. J Air Waste Manag Assoc 53:1256–1264

    Article  Google Scholar 

  • Burt S, Eden P (2004) The August 2003 heatwave in the United Kingdom. Part 2 The hottest sites. Weather 59:239e246

    Google Scholar 

  • Carpentieri M, Kumar P (2011) Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle. Atmos Environ 45:5837–5852

    Article  Google Scholar 

  • Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37:649–660

    Article  Google Scholar 

  • Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:879

    Article  Google Scholar 

  • Chen M, Wang X, Yu Y, Pei Z, Bai X, Sun C, Huang R, Wen L (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140

    Article  Google Scholar 

  • Cohen DD, Bailey GM, Kondepudi R (1996) Elemental analysis by PIXE and other IBA techniques and their application to source fingerprinting of atmospheric fine particle pollution. Nucl Instrum Methods Phys Res Sect B 109:218–226

    Article  Google Scholar 

  • Conny JM (2013) Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy. Environ Sci Technol 47:8575–8581

    Google Scholar 

  • Dall’Osto M, Thorpe A, Beddows DCS, Harrison RM, Barlow JF, Dunbar T, Williams PI, Coe H (2011) Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos Chem Phys 11:6623–6637

    Article  Google Scholar 

  • Davila AF, Rey D, Mohamed K, Rubio B, Guerra AP (2006) Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ Sci Technol 40:3922–3928

    Article  Google Scholar 

  • Directive C (1999) Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. J Eur Commun 50:41–60

    Google Scholar 

  • Dorevitch S, Demirtas H, Perksy VW, Erdal S, Conroy L, Schoonover T, Scheff PA (2006) Demolition of high-rise public housing increases particulate matter air pollution in communities of high-risk asthmatics. J Air Waste Manag Assoc 56:1022–1032

    Article  Google Scholar 

  • Egbu CO (1999) Skills, knowledge and competencies for managing construction refurbishment works. Construct Manag Econ 17:29–43

    Article  Google Scholar 

  • Fujitani Y, Kumar P, Tamura K, Fushimi A, Hasegawa S, Takahashi K, Tanabe K, Kobayashi S, Hirano S (2012) Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci Total Environ 437:339–347

    Article  Google Scholar 

  • Fuller GW, Green D (2004) The impact of local fugitive from building works and road works on the assessment of the European union limit value. Atmos Environ 38:4993–5002

    Article  Google Scholar 

  • Fuller GW, Carslaw DC, Lodge HW (2002) An empirical approach for the prediction of daily mean PM10 concentrations. Atmos Environ 36:1431–1441

    Article  Google Scholar 

  • Goel A, Kumar P (2014) A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos Environ 97:316–331

    Article  Google Scholar 

  • Goel A, Kumar P (2015) Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements. Atmos Environ 107:374–390

    Article  Google Scholar 

  • Gomez V, Levin M, Saber AT, Irusta S, Dal Maso M, Hanoi R, Santamaria J, Jensen KA, Wallin H, Koponen IK (2014) Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann Occup Hyg. doi:10.1093/annhyg/meu046

    Google Scholar 

  • Goyal R, Kumar P (2013) Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix-use commercial building in megacity Delhi. Air Qual Atmos Health 6:747–757

    Article  Google Scholar 

  • Grimm H, Eatough DJ (2009) Aerosol Measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J Air Waste Manag Assoc 59:101–107

    Article  Google Scholar 

  • GroBmann A, Hohmann F, Wiebe K (2013) PortableDyme—a simplified software package for econometric model building. Macroecon Model Policy Eval 120:33

    Google Scholar 

  • Hansen D, Blahout B, Benner D, Popp W (2008) Environmental sampling of particulate matter and fungal spores during demolition of a building on a hospital area. J Hosp Infect 70:259–264

    Article  Google Scholar 

  • He C, Morawska L, Hitchins J, Gilbert D (2004) Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ 38:3405–3415

    Article  Google Scholar 

  • Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630

    Article  Google Scholar 

  • HEI (2013) HEI review panel on ultrafine particles. Understanding the health effects of ambient ultrafine particles. HEI Perspectives 3 Health Effects Institute, Boston. [http://pubs.healtheffects.org/getfile.php?u=893 (accessed 27 August 2014), 122

  • Hinds WC (1999) Aerosol technology: properties, behaviour and measurement of airborne particles. Wiley, New York

    Google Scholar 

  • Hofmann W (2011) Modelling inhaled particle deposition in the human lung d a review. J Aerosol Sci 42:693–724

    Article  Google Scholar 

  • Hopke PK, Lamb RE, Natusch DFS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172

    Article  Google Scholar 

  • Hunt A, Johnson DL, Watt JM, Thornton I (1992) Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy. Environ Sci Technol 26:1513–1523

    Article  Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection, a report of a task group of the international commission on radiological protection. ICRP Publ 66:1–482

    Google Scholar 

  • Int Panis L, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, Mishra V, Thomas I, Meeusen R (2010) Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ 44:2263–2270

    Article  Google Scholar 

  • Jeynes C, Bailey M, Bright N, Christopher M, Grime G, Jones B, Palitsin V, Webb R (2012) “Total IBA”—where are we? Nucl Instrum Methods Phys Res Sect B 271:107–118

    Article  Google Scholar 

  • Joodatnia P, Kumar P, Robins A (2013a) The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates. Atmos Environ 65:40–51

    Article  Google Scholar 

  • Joodatnia P, Kumar P, Robins A (2013b) Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin. Atmos Environ 71:364–375

    Article  Google Scholar 

  • Kohler N, Hassler U (2002) The building stock as a research object. Build Res Inf 30:226–236

    Article  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  Google Scholar 

  • Kumar P, Morawska L (2014) Recycling concrete: an undiscovered source of ultrafine particles. Atmos Environ 90:51–58

    Article  Google Scholar 

  • Kumar P, Fennell P, Britter R (2008) Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci Total Environ 402:82–94

    Article  Google Scholar 

  • Kumar P, Robins A, Vardoulakis S, Britter R (2010) A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos Environ 44:5035–5052

    Article  Google Scholar 

  • Kumar P, Ketzel M, Vardoulakis S, Pirjola L, Britter R (2011a) Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J Aerosol Sci 42:580–603

    Article  Google Scholar 

  • Kumar P, Robins A, Vardoulakis S, Quincey P (2011b) Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles. Particulogy 9:566–571

    Article  Google Scholar 

  • Kumar P, Azarmi F, Mulheron M (2012a) Enlightening and noxious shades of nanotechnology application in concrete. In: Govil JN (ed) Nanotechnology 7 Civil/Construction Engineering. Studium Press LLC, Houston, pp 255–287. ISBN: 1-62699-009-3

  • Kumar P, Mulheron M, Fisher B, Harrison RM (2012b) New directions: airborne ultrafine particle dust from building activities—a source in need of quantification. Atmos Environ 56:262–264

    Article  Google Scholar 

  • Kumar P, Mulheron M, Som C (2012c) Release of ultrafine particles from three simulated building processes. J Nanopart Res. doi:10.1007/s11051-012-0771-2

    Google Scholar 

  • Kumar P, Jain S, Gurjar BR, Sharma P, Khare M, Morawska L, Britter R (2013a) Can a “Blue Sky” return to Indian megacities? Atmos Environ 71:198–201

    Article  Google Scholar 

  • Kumar P, Pirjola L, Ketzel M, Harrison RM (2013b) Nanoparticle emissions from 11 non-vehicle exhaust sources—a review. Atmos Environ 67:252–277

    Article  Google Scholar 

  • Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R (2014) Ultrafine particles in cities. Environ Int 66:1–10

    Article  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Mickaityte A, Zavadskas EK, Kaklauskas A, Tupenaite L (2008) The concept model of sustainable buildings refurbishment. Int J Strateg Property Manag 12:53–68

    Article  Google Scholar 

  • Mouzourides P, Kumar P, Marina Neophytou KA (2015) Assessment of long-term measurements of particulate matter and gaseous pollutants in South-East Mediterranean. Atmos Environ 107:148–165. doi:10.1016/j.atmosenv.2015.02.031

    Article  Google Scholar 

  • Omer AM (2008) Renewable building energy systems and passive human comfort solutions. Renew Sustain Energy Rev 12:1562–1587

    Article  Google Scholar 

  • Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper Colorado river Basin. Environ Sci Technol 36:3194–3200

    Article  Google Scholar 

  • Pattanaik S, Huggins FE, Huffman GP (2012) Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy. Environ Sci Technol 46:12927–12935

    Article  Google Scholar 

  • Potgieter-Vermaak SS, Godoi RHM, Grieken RV, Potgieter JH, Oujja M, Castillejo M (2005) Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta Part A 61:2460–2467

    Article  Google Scholar 

  • Raki L, Beaudoin J, Alizadeh R, Makar J, Sato T (2010) Cement and concrete nanoscience and nanotechnology. Materials 3:918–942

    Article  Google Scholar 

  • Sartori I, Bergsdal H, Müller DB, Brattebø H (2008) Towards modelling of construction, renovation and demolition activities: norway’s dwelling stock, 1900–2100. Build Res Inf 36:412–425

    Article  Google Scholar 

  • Sunikka M, Boon C (2003) Environmental policies and efforts in social housing: the Netherlands. Build Res Inf 31:1–12

    Article  Google Scholar 

  • Walker S, Jamieson H, Rasmussen P (2011) Application of synchrotron microprobe methods to solid-phase speciation of metals and metalloids in house dust. Environ Sci Technol 45:8233–8240

    Article  Google Scholar 

  • Watt IM (1997) The principles and practice of electron microscopy, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. In: John FW, John W (eds) An introduction to surface analysis by XPS and AES. Wiley-VCH, New York. ISBN 0-470-84713-1

Download references

Acknowledgments

The authors thank the University of the Surrey and Cara for supporting this work. Thanks are also due to Chris Burt, Anju Goel, Abdullah N. Al-Dabbous, Sujit Gurung and Dr Sanjay Mukherjee for their help during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarmi, F., Kumar, P., Mulheron, M. et al. Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities. J Nanopart Res 17, 343 (2015). https://doi.org/10.1007/s11051-015-3141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3141-z

Keywords

Navigation