Skip to main content
Log in

The effect of charge on the release kinetics from polysaccharide–nanoclay composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, ben Salah A et al (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  Google Scholar 

  • Abdullayev E, Lvov Y (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 1:2894–2903. doi:10.1039/C3TB20059K

    Article  Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. doi:10.1016/j.jconrel.2004.08.010

    Article  Google Scholar 

  • Aguzzi C, Viseras C, Cerezo P et al (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids Surf B 105:75–80. doi:10.1016/j.colsurfb.2012.12.041

    Article  Google Scholar 

  • Arcudi F, Cavallaro G, Lazzara G et al (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101. doi:10.1021/jp504388e

    Article  Google Scholar 

  • Bai H, Zhang H, He Y et al (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232. doi:10.1016/j.memsci.2013.12.005

    Article  Google Scholar 

  • Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299. doi:10.1016/j.yrtph.2009.09.015

    Article  Google Scholar 

  • Bariana M, Aw MS, Kurkuri M, Losic D (2013) Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int J Pharm 443:230–241. doi:10.1016/j.ijpharm.2012.12.012

    Article  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.1021/ja01145a126

    Article  Google Scholar 

  • Berthold A, Cremer K, Kreuter J (1996) Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release 39:17–25. doi:10.1016/0168-3659(95)00129-8

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  • Buchtová N, Réthoré G, Boyer C et al (2013) Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. J Mater Sci 24:1875–1884. doi:10.1007/s10856-013-4951-0

    Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56. doi:10.1002/adma.201003963

    Article  Google Scholar 

  • Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305. doi:10.1021/cm0101632

    Article  Google Scholar 

  • Chao C, Liu J, Wang J et al (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564. doi:10.1021/am4022973

    Article  Google Scholar 

  • Chen M, Liu X, Fahr A (2011) Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application. Int J Pharm 408:223–234. doi:10.1016/j.ijpharm.2011.02.006

    Article  Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279. doi:10.1016/j.carbpol.2012.10.028

    Article  Google Scholar 

  • Connell LS, Romer F, Suárez M et al (2014) Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J Mater Chem B 2:668. doi:10.1039/c3tb21507e

    Article  Google Scholar 

  • Deen I, Zhitomirsky I (2014) Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloys Compd 586(1):S531–S534. doi:10.1016/j.jallcom.2013.01.088

    Article  Google Scholar 

  • Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    Google Scholar 

  • Duarte HA, Lourenco MP, Heine T, Guimares L (2012) Clay mineral nanotubes: stability, structure and properties. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  • Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99:167–182

    Article  Google Scholar 

  • Falcone SJ, Berg RA (2008) Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties. J Biomed Mater Res A 87:264–271. doi:10.1002/jbm.a.31675

    Article  Google Scholar 

  • Forster S, Thumser AE, Hood SR, Plant N (2012) Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS ONE 7:e33253. doi:10.1371/journal.pone.0033253

    Article  Google Scholar 

  • Fox JD, Capadona JR, Marasco PD, Rowan SJ (2013) Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak. J Am Chem Soc 135:5167–5174. doi:10.1021/ja4002713

    Article  Google Scholar 

  • Ghebaur A, Garea SA, Iovu H (2012) New polymer–halloysite hybrid materials—potential controlled drug release system. Int J Pharm 436:568–573. doi:10.1016/j.ijpharm.2012.07.014

    Article  Google Scholar 

  • Ghorai S, Sarkar A, Panda AB, Pal S (2013) Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind Eng Chem Res 52:9731–9740. doi:10.1021/ie400550m

    Article  Google Scholar 

  • Gu BK, Park SJ, Kim MS et al (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73. doi:10.1016/j.carbpol.2013.04.060

    Article  Google Scholar 

  • Ha DI, Lee SB, Chong MS et al (2006) Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res 14:87–93. doi:10.1007/BF03219073

    Article  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980. doi:10.1021/bm8001717

    Article  Google Scholar 

  • Haxaire K, Marechal Y, Milas M, Rinaudo M (2003) Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers 72:10–20. doi:10.1002/bip.10245

    Article  Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165. doi:10.1016/S0168-3659(03)00126-3

    Article  Google Scholar 

  • Horcajada P, Chalati T, Serre C et al (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. doi:10.1038/nmat2608

    Article  Google Scholar 

  • Issa MM, Köping-Höggård M, Artursson P (2005) Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov Today 2:1–6. doi:10.1016/j.ddtec.2005.05.008

    Article  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K et al (2010a) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232. doi:10.1016/j.carbpol.2010.04.074

    Article  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. doi:10.1016/j.biotechadv.2009.11.001

    Article  Google Scholar 

  • Joussein E, Petit S, Churchman J et al (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426. doi:10.1180/0009855054040180

    Article  Google Scholar 

  • Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40:155–175. doi:10.3109/1040841X.2013.770385

    Article  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11. doi:10.1016/j.addr.2009.09.004

    Article  Google Scholar 

  • Khoo WS, Ismail H, Ariffin A (2012) Tensile, swelling, and oxidative degradation properties of crosslinked polyvinyl alcohol/chitosan/halloysite nanotube composites. Int J Polym Mater 62:390–396. doi:10.1080/00914037.2012.719133

    Article  Google Scholar 

  • Kulterer MR, Reichel VE, Kargl R et al (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:1749–1758. doi:10.1002/adfm.201102350

    Article  Google Scholar 

  • Lee H, Lee K, Park TG (2008) Hyaluronic acid–paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 19:1319–1325. doi:10.1021/bc8000485

    Article  Google Scholar 

  • Levis SR, Deasy PB (2002) Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243:125–134

    Article  Google Scholar 

  • Levis SR, Deasy PB (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. Int J Pharm 253:145–157

    Article  Google Scholar 

  • Liu Tsang V, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647. doi:10.1016/j.addr.2004.05.001

    Article  Google Scholar 

  • Liu M, Zhang Y, Wu C et al (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575. doi:10.1016/j.ijbiomac.2012.06.022

    Article  Google Scholar 

  • Liu M, Wu C, Jiao Y et al (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089. doi:10.1039/C3TB20084A

    Article  Google Scholar 

  • Liu M, Shen Y, Ao P et al (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4:23540–23553. doi:10.1039/C4RA02189D

    Article  Google Scholar 

  • Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  Google Scholar 

  • Marney DCO, Yang W, Russell LJ et al (2012) Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol 23:1564–1571. doi:10.1002/pat.3030

    Article  Google Scholar 

  • Massaro M, Riela S, Cavallaro G et al (2014) Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. J Organomet Chem 749:410–415. doi:10.1016/j.jorganchem.2013.10.044

    Article  Google Scholar 

  • Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23:181–191. doi:10.1016/S0142-9612(01)00094-1

    Article  Google Scholar 

  • Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835. doi:10.1016/j.biomaterials.2003.10.016

    Article  Google Scholar 

  • Ortona O, D’Errico G, Mangiapia G, Ciccarelli D (2008) The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr Polym 74:16–22. doi:10.1016/j.carbpol.2008.01.009

    Article  Google Scholar 

  • Pandey S, Goswami GK, Nanda KK (2013) Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym 94:229–234. doi:10.1016/j.carbpol.2013.01.009

    Article  Google Scholar 

  • Price R, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 18:713–722. doi:10.1080/02652040010019532

    Article  Google Scholar 

  • Ritger PL, Peppas NA (1987a) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36. doi:10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

  • Ritger PL, Peppas NA (1987b) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. doi:10.1016/0168-3659(87)90035-6

    Article  Google Scholar 

  • Roig-Roig F, Solans C, Esquena J, García-Celma MJ (2013) Preparation, characterization, and release properties of hydrogels based on hyaluronan for pharmaceutical and biomedical use. J Appl Polym Sci 130:1377–1382. doi:10.1002/app.39306

    Article  Google Scholar 

  • Roldo M, Fatouros DG (2011) Chitosan-derivative based hydrogels as drug delivery platforms: applications in drug delivery and tissue engineering. In: Zilberman M (ed) Act. Implants scaffolds tissue regen. Springer, Berlin, pp 351–376

    Chapter  Google Scholar 

  • Ruiz-Hitzky E, Van Meerbeek A (2006) Chapter 10.3 clay mineral- and organoclay-polymer nanocomposite. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, Amsterdam, pp 583–621

    Google Scholar 

  • Ruiz-Hitzky E, Darder M, Fernandes FM et al (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414. doi:10.1016/j.progpolymsci.2013.05.004

    Article  Google Scholar 

  • Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670. doi:10.1016/j.biomaterials.2005.12.002

    Article  Google Scholar 

  • Shchukin DG, Möhwald H (2011) Smart nanocontainers as depot media for feedback active coatings. Chem Commun 47:8730. doi:10.1039/c1cc13142g

    Article  Google Scholar 

  • Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513

    Article  Google Scholar 

  • Shingel KI, Marchessault RH (2006) Iron-polysaccharide composites for pharmaceutical applications. Polysacch Drug Deliv Pharm Appl 934:271–287

    Article  Google Scholar 

  • Stodolak E, Paluszkiewicz C, Bogun M, Blazewicz M (2009) Nanocomposite fibres for medical applications. J Mol Struct 924–926:208–213. doi:10.1016/j.molstruc.2009.01.018

    Article  Google Scholar 

  • Sudina ML, Braga CRC, Marcus VL et al (2012) Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. InTech, Rijeka, pp 43–62

    Google Scholar 

  • Suh DJ, Lim YT, Park OO (2000) The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods. Polymer 41:8557–8563. doi:10.1016/S0032-3861(00)00216-0

    Article  Google Scholar 

  • Travan A, Marsich E, Donati I et al (2011) Silver–polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater 7:337–346. doi:10.1016/j.actbio.2010.07.024

    Article  Google Scholar 

  • Vallés-Lluch A, Poveda-Reyes S, Amorós P et al (2013) Hyaluronic acid-silica nanohybrid gels. Biomacromolecules 14:4217–4225. doi:10.1021/bm401041z

    Article  Google Scholar 

  • Veerabadran NG, Price RR, Lvov YM (2007) Clay nanotubes for encapsulation and sustained release of drugs. NANO 2:115–120

    Article  Google Scholar 

  • Vergaro V, Abdullayev E, Lvov YM et al (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11:820–826

    Article  Google Scholar 

  • Verma NK, Moore E, Blau W et al (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanoparticle Res 14:1–11. doi:10.1007/s11051-012-1137-5

    Article  Google Scholar 

  • Wang Q, Zhang J, Zheng Y, Wang A (2014) Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids Surf B 113:51–58. doi:10.1016/j.colsurfb.2013.08.036

    Article  Google Scholar 

  • Ward CJ, Song S, Davis EW (2010) Controlled release of tetracycline-hcl from halloysite-polymer composite films. J Nanosci Nanotechnol 10:6641–6649. doi:10.1166/jnn.2010.2647

    Article  Google Scholar 

  • Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751. doi:10.1021/jp805657t

    Article  Google Scholar 

  • Zhao Y, Wang S, Guo Q et al (2013) Hemocompatibility of electrospun halloysite nanotube- and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci 127:4825–4832. doi:10.1002/app.38054

    Article  Google Scholar 

Download references

Acknowledgments

CSGI is acknowledged for financial support. Stefano Spezzani (Imerys Tiles Minerals Italia s.r.l.) is acknowledged for kindly providing HNT samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

This research did not involve human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Baglioni.

Additional information

Guest Editor: Liudmyla Rieznichenko

This article is part of the topical collection on Engineered Bioinspired Nanomaterials

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Buffa, S., Grifoni, E., Ridi, F. et al. The effect of charge on the release kinetics from polysaccharide–nanoclay composites. J Nanopart Res 17, 146 (2015). https://doi.org/10.1007/s11051-015-2947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2947-z

Keywords

Navigation