Skip to main content
Log in

Design of experiments for the development of poly(d,l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box–Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bala I, Hariharan S, Kumar MNVR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carr Syst 21:387–422

    Article  Google Scholar 

  • Bertol G, Franco L, Oliveira BH (2012) HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimization by factorial design. Phytochem Anal 23:143–151

    Article  Google Scholar 

  • Bharali DJ, Siddiqui IA, Adhami VM, Chamcheu JC, Aldahmash AM, Mukhtar H, Mousa SA (2011) Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers 3:4024–4045

    Article  Google Scholar 

  • Bonifácio BV, Da Silva PB, Ramos MAS, Negri KMS, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15

    Article  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  Google Scholar 

  • Byun Y, Hwang JB, Bang SH, Darby D, Cooksey K, Dawson PL, Park HJ, Whiteside S (2011) Formulation and characterization of α-tocopherol loaded poly e-caprolactone (PCL) nanoparticles. Lebensm Wiss Technol 44:24–28

    Article  Google Scholar 

  • Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR (2012) Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 47:313–324

    Article  Google Scholar 

  • De Martino L, Martinot JLS, Franceschelli S, Leone A, Pizza C, De Feo V (2006) Proapoptotic effect of Uncaria tomentosa extracts. J Ethnopharmacol 107:91–94

    Article  Google Scholar 

  • Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275:171–187

    Article  Google Scholar 

  • Dinda A, Biswal I, Das D, Si S, Kumar S, Barik BB, Safhi MM (2011) Effect of stabilizers and process parameters for budesonide loaded PLGA-nanoparticle. Int J Drug Deliv 3:371–380

    Google Scholar 

  • Fazio AL, Ballén D, Cesari IM, Abad MJ, Arsenak M, Taylor P (2008) An ethanolic extract of Uncaria tomentosa reduces inflammation and B16-. BL6 melanoma growth in C57BL/6 mice. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas (BLACPMA) 7:217–224

    Google Scholar 

  • Feczkó T, Tóth J, Gyenis J (2008) Comparison of the preparation of PLGA–BSA nano-and microparticles by PVA, poloxamer and PVP. Colloids Surf A 319:188–195

    Article  Google Scholar 

  • Gaumet M, Vargas V, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  Google Scholar 

  • Giménez DG, Prado EG, Rodríguez T, Arche AF, De La Puerta R (2010) Cytotoxic effect of the pentacyclic oxindole alkaloid mitraphylline isolated from Uncaria tomentosa bark on human Ewings sarcoma and breast cancer cell lines. Planta Med 76:133–136

    Article  Google Scholar 

  • Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331:153–159

    Article  Google Scholar 

  • Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9:767–776

    Article  Google Scholar 

  • Han L, Fu Y, Cole AJ, Liu J, Wang J (2012) Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia 83:721–731

    Article  Google Scholar 

  • Hill LE, Taylor TM, Gomes C (2013) Antimicrobial efficacy of poly(dl-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. J Food Sci 78:626–632

    Article  Google Scholar 

  • Holy CE, Dang SM, Davies JE, Shoichet MS (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20:1177–1185

    Article  Google Scholar 

  • Ishak RAH, Awad GAS, Zaki NM, El-Shamy AE-HA, Mortada ND (2013) A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution. Carbohydr Polym 94:669–676

    Article  Google Scholar 

  • Keum C-G, Noh Y-W, Baek J-S, Lim J-H, Hwang C-J, Na Y-G, Shin S-C, Cho C-W (2011) Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int J Nanomedicine 6:2225–2234

    Google Scholar 

  • Khemani M, Sharon M, Sharon M (2012) Encapsulation of berberine in nano-sized PLGA synthesized by emulsification method. ISRN Nanotechnol. doi:10.5402/2012/187354

    Google Scholar 

  • Kumar A, Sawant K (2013) Encapsulation of exemestane in polycaprolactone nanoparticles: optimization, characterization, and release kinetics. Cancer Nanotechnol 4:57–71

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18

    Article  Google Scholar 

  • Lee KK, Zhou BN, Kingston DG, Vaisberg AJ, Hammond GB (1999) Bioactive indole alkaloids from the bark of Uncaria guianensis. Planta Med 65:759–760

    Article  Google Scholar 

  • Li J-T, Caldwell KD, Rapoport N (1994) Surface properties of pluronic-coated polymeric colloids. Langmuir 10:4475–4482

    Article  Google Scholar 

  • Li J, Jiang G, Ding F (2008) The effect of pH on the polymer degradation and drug release from PLGA-mPEG microparticles. J Appl Polym Sci 109:475–482

    Article  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397

    Article  Google Scholar 

  • Melo JG, Santos AG, Amorim ELC, Nascimento SC, Albuquerque UP (2011) Medicinal plants used as antitumor agents in Brazil: an ethnobotanical approach. Evid Based Complement Altern Med 2011:1–14

    Article  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Musazzi UM, Youm I, Murowchick JB, Ezoulin MJ, Youan B-BC (2014) Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells. Colloids Surf B. doi:10.1016/j.colsurfb.2014.03.054

    Google Scholar 

  • Narayanan S, Binulal NS, Mony U, Manzoor K, Nair S, Menon D (2010) Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology 21:1–13

    Article  Google Scholar 

  • Paul S, Bhattacharyya SS, Khuda-Bukhsh AR, Khuda-Bukhsh AR (2011) Anticancer potentials of root extract of polygala senega and its PLGA nanoparticles-encapsulated form. Evid Based Complement Altern Med 2011:1–13

    Article  Google Scholar 

  • Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomedicine 5:803–809

    Google Scholar 

  • Pilarski R, Filip B, Wietrzyk J, Kura´s M, Gulewicz K (2010) Anticancer activity of the Uncaria tomentosa (Willd.) DC. preparations with different oxindole alkaloid composition. Phytomedicine 17:1133–1139

    Article  Google Scholar 

  • Plapied L, Duhem N, Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237

    Article  Google Scholar 

  • Prado EG, Gimenez MDG, Vázquez RP, Sánchez JLE, Rodríguez MTS (2007) Antiproliferative effects of mitraphylline, a pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neuroblastoma cell lines. Phytomedicine 14:280–284

    Article  Google Scholar 

  • Ribeiro AF, De Oliveira Rezende RL, Cabral LM, Sousa VP (2013) Poly-ε-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box-Behnken design. Int J Nanomedicine 8:431–442

    Google Scholar 

  • Sahana DK, Mittal G, Bhardwaj V, Ravi Kumar MNV (2008) PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 97:1530–1542

    Article  Google Scholar 

  • Sengel Türk CT, Sezgin Bayindir Z, Badilli U (2009) Preparation of polymeric nanoparticles using different stabilizing agents. J Fac Pharm Ank 38:257–268

    Google Scholar 

  • Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Song KC, Lee HS, Choung IY, Cho KI, Ahn Y, Choi EJ (2006) The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles. Colloids Surf A Physicochem Eng Asp 276:162–167

    Article  Google Scholar 

  • Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350:320–329

    Article  Google Scholar 

  • Sousa VP, Crean J, Borges VRA, Rodrigues CR, Tajber L, Boylan F, Cabral LM (2013) Nanostructured systems containing babassu (Orbignya speciosa) oil as a potential alternative therapy for benign prostatic hyperplasia. Int J Nanomedicine 8:3129–3139

    Article  Google Scholar 

  • Stuppner H, Sturm S, Konwalinka G (1992) Capillary electrophoretic analysis of oxindole alkaloids from Uncaria tomentosa. J Chromatogr 609:375–380

    Article  Google Scholar 

  • United States Pharmacopeia (2012) Method 467 - residual solvents, 35th edn. United States Pharmacopeial Convention, Rockville

    Google Scholar 

  • Van De Ven H, Vermeersch M, Matheeussen A, Vandervoort J, Weyenberg W, Apers S, Cos P, Maes L, Ludwig A (2011) PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation. Int J Pharm 420:122–132

    Article  Google Scholar 

  • Vandervoort J, Ludwig A (2002) Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int J Pharm 238:77–92

    Article  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  Google Scholar 

  • Woitiski CB, Veiga F, Ribeiro A, Neufeld R (2009) Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur J Pharm Biopharm 73:25–33

    Article  Google Scholar 

  • Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X, Fang X (2010) Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(e-caprolactone) nanoparticles: in vitro and in vivo evaluation. Int J Pharm 402:238–247

    Article  Google Scholar 

  • Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, Sun H, Huang L (2010) The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine 6:170–178

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPERJ and CAPES Edital CAPES Nanobiotecnologia 2008. The authors wish to thank the Herbarium Laboratório Botânico Ltda., IFRJ, LADEQ/UFRJ, and EngePol/COPPE/UFRJ.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ferreira Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, A.F., Ferreira, C.T.G., dos Santos, J.F. et al. Design of experiments for the development of poly(d,l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa . J Nanopart Res 17, 69 (2015). https://doi.org/10.1007/s11051-015-2883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2883-y

Keywords

Navigation