Skip to main content

Advertisement

Log in

Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2−xy C x N y nanoparticles toward visible-light driven photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A one-step solvent evaporation-induced self-assembly (SEISA) process was demonstrated to prepare carbon and nitrogen co-doping mesoporous TiO2 nanoparticles (MesoTiO2−xy C x N y -S) using an ionic liquid as carbon and nitrogen sources as well as mesoporous template. After the evaporation of different solvents (methanol, ethanol, and isopropanol) and subsequent calcinations at 773 K, the obtained MesoTiO2−xy C x N y -S samples were systematically characterized by a variety of spectroscopic and analytical techniques, including small- and large-angle X-ray diffraction (XRD), Raman, transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Fourier transform infrared (FTIR), and X-ray photoelectron (XPS) spectroscopies. The results indicate that the solvents play an essential role on the chemical microstructure, doping elemental states, and photocatalytic performance of catalysts. The MesoTiO2−xy C x N y -I samples have the lowest band gap of ca. 2.75 eV and strongest absorbance of visible light in the range of 400–600 nm. Among the MesoTiO2−xy C x N y -S photocatalysts, the MesoTiO2−xy C x N y -M catalysts show superior photocatalytic activity of hydrogen generation in methanol aqueous solution under visible light irradiation as compared to MesoTiO2−xy C x N y -E, MesoTiO2−xy C x N y -I, and commercial Degussa TiO2. This result could be attributed to the moderate C,N co-doping amounts on their developed mesoporous texture (pore size = 8.0 nm) and high surface area (107 m2 g−1) of TiO2 (crystallite size = 9.9 nm) in the MesoTiO2−xy C x N y -M catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49. doi:10.1002/adfm.200400184

    Article  Google Scholar 

  • Chen DM, Jiang ZY, Geng JQ, Wang Q, Yang D (2007a) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. doi:10.1021/ie061491k

    Article  Google Scholar 

  • Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW (2007b) Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J Power Sources 171:363–372. doi:10.1016/j.jpowsour.2007.06.047

    Article  Google Scholar 

  • Chen DM, Jiang ZY, Geng JQ, Zhu JH, Yang D (2009) A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6. J Nanoparticle Res 11:303–313. doi:10.1007/s11051-008-9383-2

    Article  Google Scholar 

  • Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801. doi:10.1246/cl.2006.800

    Article  Google Scholar 

  • Das SK, Bhunia MK, Sinha AK, Bhaumik A (2009) Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template. J Phys Chem C 113:8918–8923. doi:10.1021/jp9014096

    Article  Google Scholar 

  • Das SK, Bhunia MK, Bhaumik A (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39(2010):4382–4390. doi:10.1039/c000317d

    Article  Google Scholar 

  • Dhananjeyan MR, Kandavelu V, Renganathan R (2000) A study on the photocatalytic reactions of TiO2 with certain pyrimidine bases: effects of dopants (Fe3+) and calcination. J Mol Catal A Chem 151:217–223. doi:10.1016/S1381-1169(99)00246-0

    Article  Google Scholar 

  • Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820. doi:10.1021/jp993819b

    Article  Google Scholar 

  • Dolat D, Quici N, Kusiak-Nejman E, Morawski AW, Puma GL (2012) One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C-TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B Environ 115–116:81–89. doi:10.1016/j.apcatb.2011.12.007

    Article  Google Scholar 

  • Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi:10.1039/b822551f

    Article  Google Scholar 

  • Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem Mater 22:3843–3853. doi:10.1021/cm903260f

    Article  Google Scholar 

  • Han CC, Lin YP, Ho SY, Lai YC, Chen SY, Huang J, Chen-Yang YW (2010) Effect of ionic liquid-templated mesoporous anatase TiO2 on performance of dye-sensitized solar cell. J Phys D Appl Phys 43:035102. doi:10.1088/0022-3727/43/3/035102

    Article  Google Scholar 

  • Han CS, Andersen J, Likodimos V, Falaras P, Linkugel J, Dionysiou DD (2014) The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal Today 224:132–139. doi:10.1016/j.cattod.2013.11.052

    Article  Google Scholar 

  • Hojamberdiev M, Prasad RM, Morita K, Zhu YF, Schiavon M, Al Gurlo, Riedel R (2012) Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. Appl Catal B Environ 115:303–313. doi:10.1016/j.apcatb.2011.12.036

    Article  Google Scholar 

  • Huang B, Wey MY (2013) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol-gel process. J Nanoparticle Res 16:2178. doi:10.1007/s11051-013-2178-0

    Article  Google Scholar 

  • Kim J, Kang M (2012) High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Int J Hydrogen Energy 37:8249–8256. doi:10.1016/j.ijhydene.2012.02.057

    Article  Google Scholar 

  • Li FT, Wang XJ, Zhao Y, Liu JX, Hao YJ, Liu RH, Zhao DS (2014) Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO2 via a microwave route. Appl Catal B Environ 144:442–453. doi:10.1016/j.apcatb.2013.07.050

    Article  Google Scholar 

  • Liu S-H, Syu H-R (2012) One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Appl Energy 100:148–154. doi:10.1016/j.apenergy.2012.03.063

    Article  Google Scholar 

  • Liu S-H, Syu H-R (2013) High visible-light photocatalytic hydrogen evolution of C, N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid template approach. Int J Hydrogen Energy 38:13856–13865. doi:10.1016/j.ijhydene.2013.08.094

    Article  Google Scholar 

  • Ma Z, Yu JH, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. doi:10.1002/adma.200900603

    Article  Google Scholar 

  • Manole AV, Dobromir M, Apetrei R, Nica V, Luca D (2014) Surface characterization of sputtered N:TiO2 thin films within a wide range of dopant concentration. Ceram Int 40:9989–9995. doi:10.1016/j.ceramint.2014.02.097

    Article  Google Scholar 

  • Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts. Adv Funct Mater 17:3348–3354. doi:10.1002/adfm.200700396

    Article  Google Scholar 

  • Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36:2794–2802. doi:10.1016/j.ijhydene.2010.11.104

    Article  Google Scholar 

  • Noguchi D, Kawamata Y, Nagatomo T (2005) The response of TiO2 photocatalysts codoped with nitrogen and carbon to visible light. J Electrochem Soc 152:D124–D129. doi:10.1149/1.1990581

    Article  Google Scholar 

  • Ould-Chikh S, Proux O, Afanasiev P, Khrouz L, Hedhili MN, Anjum DH, Harb M, Geantet C, Basset JM, Puzenat E (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem 7:1361–1371. doi:10.1002/cssc.201300922

    Article  Google Scholar 

  • Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A (2014) Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B Environ 154–155:285–293. doi:10.1016/j.apcatb.2014.02.039

    Article  Google Scholar 

  • Pan JH, Zhang XW, Du AJ, Sun DD, Leckie JO (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257. doi:10.1021/ja803582m

    Article  Google Scholar 

  • Parker JC, Siegel RW (1990) Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett 57:943–945

    Article  Google Scholar 

  • Ruzybayev I, Shah SI (2014) The role of oxygen pressure in nitrogen and carbon co-doped TiO2 thin films prepared by pulsed laser deposition method. Surf Coat Technol 241:148–153. doi:10.1016/j.surfcoat.2013.10.073

    Article  Google Scholar 

  • Sajjad S, Leghari SAK, Zhang JL (2013) Copper impregnated ionic liquid assisted mesoporous titania: visible light photocatalyst. RSC Adv 3:12678–12687. doi:10.1039/c3ra23347b

    Article  Google Scholar 

  • Scarisoreanu M, Morjan I, Alexandrescu R, Fleaca CT, Badoi A, Dutu E, Niculescu A-M, Luculescu C, Vasile E, Wang J, Bouhadoun S, Herlin-Boime N (2014) Enhancing the visible light absorption of titania nanoparticles by S and C doping in a single-step process. Appl Surf Sci 4:5880–5886. doi:10.1016/j.apsusc.2014.01.135

    Google Scholar 

  • Sivaranjani K, Gopinath CS (2011) Porosity driven photocatalytic activity of wormhole mesoporous TiO2-xNx in direct sunlight. J Mater Chem 21:2639–2647. doi:10.1039/c0jm03825c

    Article  Google Scholar 

  • Song JJ, Zhu BL, Zhao WL, Hu XJ, Shi YK, Huang WP (2013) Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach. J Nanopart Res 15:1494. doi:10.1007/s11051-013-1494-8

    Article  Google Scholar 

  • Soni SS, Henderson MJ, Bardeau JF, Gibaud A (2008) Visible-light photocatalysis in titania-based mesoporous thin films. Adv Mater 20:1493–1498. doi:10.1002/adma.200701066

    Article  Google Scholar 

  • Tian HJ, Hu LH, Zhang CN, Liu WQ, Huang Y, Mo L, Guo L, Sheng J, Dai SY (2010) Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J Phys Chem C 114:1627–1632. doi:10.1021/jp9103646

    Article  Google Scholar 

  • Todorova N, Vaimakis T, Petrakis D, Hishita S, Boukos N, Giannakopoulou T, Giannouri M, Antiohos S, Papageorgiou D, Chaniotakis E, Trapalis C (2013) N and N, S-doped TiO2 photocatalysts and their activity in NOx oxidation. Catal Today 209:41–46. doi:10.1016/j.cattod.2012.11.019

    Article  Google Scholar 

  • Umadevi M, Parimaladevi R, Sangari M (2014) Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method. Spectrochim Acta A 120:365–369. doi:10.1016/j.saa.2013.10.046

    Article  Google Scholar 

  • Venieri D, Fraggedaki A, Kostadima M, Chatzisymeon E, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2014) Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl Catal B Environ 154:93–101. doi:10.1016/j.apcatb.2011.12.007

    Article  Google Scholar 

  • Vereb G, Manczinger L, Oszko A, Sienkiewicz A, Forro L, Mogyorosi K, Dombi A, Hernadi K (2013) Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B Environ 129:194–201. doi:10.1016/j.apcatb.2012.08.037

    Article  Google Scholar 

  • Wang XP, Lim TT (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal A Gen 399:233–241. doi:10.1016/j.apcata.2011.04.002

    Article  Google Scholar 

  • Wang Q, Jiang ZY, Wang YB, Chen DM, Yang D (2009) Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. J Nanoparticle Res 11:375–384. doi:10.1007/s11051-008-9390-3

    Article  Google Scholar 

  • Wang DH, Jia L, Wu XL, Lu LQ, Xu AW (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4:576–584. doi:10.1039/c1nr11353d

    Article  Google Scholar 

  • Wu Y-C, Ju L-S (2014) Annealing-free synthesis of C-N co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities. J Alloys Compd 604:164–170. doi:10.1016/j.jallcom.2014.03.023

    Article  Google Scholar 

  • Xu QC, Wellia DV, Amal R, Liao DW, Loo JSC, Tan TTY (2010) Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale 2:1122–1127. doi:10.1039/c0nr00105h

    Article  Google Scholar 

  • Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011) Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. J Hazar Mater 188:172–180. doi:10.1016/j.jhazmat.2011.01.088

    Article  Google Scholar 

  • Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2008) Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal 260:128–133. doi:10.1016/j.jcat.2008.09.016

    Article  Google Scholar 

  • Yang GD, Jiang Z, Shi HH, Xiao TC, Yan ZF (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309. doi:10.1039/c0jm00376j

    Article  Google Scholar 

  • Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2007) Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping. J Mater Sci 42:2399–2404. doi:10.1007/s10853-006-1231-0

    Article  Google Scholar 

  • Zhang SJ, Song LM (2009) Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline. Catal Commun 10:1725–1729. doi:10.1016/j.catcom.2009.05.017

    Article  Google Scholar 

  • Zhang K, Wang XD, Guo XL, He TO, Feng YM (2014) Preparation of highly visible light active Fe-N co-doped mesoporous TiO2 photocatalyst by fast sol-gel method. J Nanopart Res 16:2246. doi:10.1007/s11051-014-2246-0

    Article  Google Scholar 

  • Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321. doi:10.1002/adma.201000660

    Article  Google Scholar 

Download references

Acknowledgments

The support of this work by the National Science Council, Taiwan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Syu, HR. & Wu, CY. Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2−xy C x N y nanoparticles toward visible-light driven photocatalytic activity. J Nanopart Res 16, 2750 (2014). https://doi.org/10.1007/s11051-014-2750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2750-2

Keywords

Navigation