Skip to main content
Log in

Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic–lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20–40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreas K, Georgieva R, Ladwig M et al (2012) Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33:25–4515. doi:10.1016/j.biomaterials.2012.02.064

    Article  Google Scholar 

  • Avdeev MV, Mucha B, Lamszus K et al (2010) Structure and in vitro biological testing of water-based ferrofluids stabilized by monocarboxylic acids. Langmuir 26:9–8503. doi:10.1021/la904471f

    Article  Google Scholar 

  • Babes L, Denizot B, Tanguy G et al (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482. doi:10.1006/jcis.1998.6053

    Article  Google Scholar 

  • Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17:4540–4547. doi:10.1021/la0103822

    Article  Google Scholar 

  • Binks BP, Whitby CP (2005) Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloids Surf A 253:105–115. doi:10.1016/j.colsurfa.2004.10.116

    Article  Google Scholar 

  • Binks BP, Murakami R, Armes SP, Fujii S (2006) Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles. Langmuir 22:7–2050. doi:10.1021/la053017+

    Google Scholar 

  • Brown P, Bushmelev A, Butts CP et al (2012) Magnetic control over liquid surface properties with responsive surfactants. Angew Chem Int Ed Engl 51:6–2414. doi:10.1002/anie.201108010

    Google Scholar 

  • Chen T, Colver PJ, Bon SAF (2007) Organic–inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Adv Mater 19:2286–2289. doi:10.1002/adma.200602447

    Article  Google Scholar 

  • Chen W, Liu X, Liu Y, Kim H-I (2010) Synthesis of microcapsules with polystyrene/ZnO hybrid shell by Pickering emulsion polymerization. Colloid Polym Sci 288:1393–1399. doi:10.1007/s00396-010-2277-8

    Article  Google Scholar 

  • Davies J (1957) A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In: Proceedings of the Second International Congress of Surface Activity London, pp 426–438

  • Eskandar N, Simovic S, Prestidge C (2007) Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions. Phys Chem Chem 9:6313–6318. doi:10.1039/b705094a

    Article  Google Scholar 

  • European Food Safety Authority (2013) EFSA ANS panel (EFSA panel on food additives and nutrient sources added to food), 2013: scientific opinion on the re-evaluation of sodium stearoyl-2-lactylate (E 481) and calcium stearoyl-2-lactylate (E 482) as food additives. EFSA J 11:1–35. doi:10.2903/j.efsa.2013.3144

    Google Scholar 

  • Flores M, Giner E, Fiszman SM et al (2007) Effect of a new emulsifier containing sodium stearoyl-2-lactylate and carrageenan on the functionality of meat emulsion systems. Meat Sci 76:9–18. doi:10.1016/j.meatsci.2006.06.032

    Article  Google Scholar 

  • Fu L, Dravid VP, Johnson DL (2001) Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles. Appl Surf Sci 181:173–178. doi:10.1016/S0169-4332(01)00388-9

    Article  Google Scholar 

  • Grigoriev DO, Leser ME, Michel M, Miller R (2007) Mixed micelles as delivery systems for enhanced emulsifier adsorption at the air/water interface: sodium stearoyl lactylate (SSL)/Tween80 solutions. Colloids Surf A 301:158–165. doi:10.1016/j.colsurfa.2006.12.048

    Article  Google Scholar 

  • He Y, Yu X (2007) Preparation of silica nanoparticle-armored polyaniline microspheres in a Pickering emulsion. Mater Lett 61:2071–2074. doi:10.1016/j.matlet.2006.08.018

    Article  Google Scholar 

  • Hong RY, Feng B, Chen LL et al (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300. doi:10.1016/j.bej.2008.07.009

    Article  Google Scholar 

  • Hosseinian A, Rezaei H, Mahjoub A (2011) Preparation of nanosized iron oxide and their photocatalytic properties for congo red. World Acedemy Sci Eng Technol 52:736–739

    Google Scholar 

  • Hu F, Jia Q, Li Y, Gao M (2011) Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T(1)- and T(2)-weighted magnetic resonance imaging. Nanotechnology 22:245604. doi:10.1088/0957-4484/22/24/245604

    Article  Google Scholar 

  • Ingram DR, Kotsmar C, Yoon KY et al (2010) Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. J Colloid Interface Sci 351:32–225. doi:10.1016/j.jcis.2010.06.048

    Article  Google Scholar 

  • Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205. doi:10.1021/mp0500014

    Article  Google Scholar 

  • Katepalli H, John VT, Bose A (2013) The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions. Langmuir 29:7–6790. doi:10.1021/la400037c

    Article  Google Scholar 

  • Khedr MH, Abdel Halim KS, Soliman NK (2009) Synthesis and photocatalytic activity of nano-sized iron oxides. Mater Lett 63:598–601. doi:10.1016/j.matlet.2008.11.050

    Article  Google Scholar 

  • Kim DK, Zhang Y, Voit W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36. doi:10.1016/S0304-8853(00)01224-5

    Article  Google Scholar 

  • Kokelaar J, Garritsen J, Prins A (1995) Surface rheological properties of sodium stearoyl-2-lactylate (SSL) and diacetyl tartaric esters of mono (and di) glyceride (DATEM) surfactants after a mechanical surface treatment in relation to their bread improving abilities. Colloids Surf A 95:69–77

    Article  Google Scholar 

  • Kurukji D, Pichot R, Spyropoulos F, Norton IT (2013) Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water Pickering emulsion stabiliser. J Colloid Interface Sci 409:88–97. doi:10.1016/j.jcis.2013.07.016

    Article  Google Scholar 

  • Kwak B (2005) Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan. IEEE Trans Magn 41:4102–4104. doi:10.1109/TMAG.2005.855338

    Article  Google Scholar 

  • Lamb J, Hentz K, Schmitt D et al (2010) A one-year oral toxicity study of sodium stearoyl lactylate (SSL) in rats. Food Chem Toxicol 48:9–2663. doi:10.1016/j.fct.2010.06.037

    Article  Google Scholar 

  • Lan Q, Liu C, Yang F et al (2007) Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci 310:9–260. doi:10.1016/j.jcis.2007.01.081

    Article  Google Scholar 

  • Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier, New York

  • Li J, Stöver HDH (2008) Doubly pH-responsive Pickering emulsion. Langmuir 24:40–13237. doi:10.1021/la802619m

    Google Scholar 

  • Liu J, He F, Durham E et al (2008) Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene. Langmuir 24:36–328. doi:10.1021/la702731h

    Article  Google Scholar 

  • Lodhia J, Mandarano G, Ferris N et al (2010) Development and use of iron oxide nanoparticles (part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J. doi:10.2349/biij.6.2.e12

    Google Scholar 

  • Melle S, Lask M, Fuller GG (2005) Pickering emulsions with controllable stability. Langmuir 21:62–2158. doi:10.1021/la047691n

    Article  Google Scholar 

  • Meshram P, Jadhav S (2012) Preparation and properties of lactic acid-based modified carboxylic surfactant. J Surf Sci Technol 28:149–161

    Google Scholar 

  • Morales MA, Jain TK, Labhasetwar V, Leslie-Pelecky DL (2005) Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer. J Appl Phys 97:10Q905. doi:10.1063/1.1850855

    Google Scholar 

  • Morales M, Finotelli P, Coaquira J et al (2008) In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium–alginate matrix for biomedical applications. Mater Sci Eng, C 28:253–257. doi:10.1016/j.msec.2006.12.016

    Article  Google Scholar 

  • Nakamoto K (1997a) Infrared and Raman spectra of inorganic and coordination compounds: Part a: theory and applications in inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  • Nakamoto K (1997b) Infrared and Raman spectra of inorganic and coordination compounds: part b: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons, Fifth Edit

    Google Scholar 

  • Orbell JD, Godhino L, Bigger SW et al (1997) Oil spill remediation using magnetic particles: an experiment in environmental technology. J Chem Educ 74:1446. doi:10.1021/ed074p1446

    Article  Google Scholar 

  • Orbell JD, Dao HV, Ngeh LN, Bigger SW (2007) Magnetic particle technology in environmental remediation and wildlife rehabilitation. Environmentalist 27:175–182. doi:10.1007/s10669-007-9026-7

    Article  Google Scholar 

  • Park J-Y, Lee Y-J, Khanna PK et al (2010) Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: effect of particle size of iron oxide. J Mol Catal A 323:84–90. doi:10.1016/j.molcata.2010.03.025

    Article  Google Scholar 

  • Prakash A, Zhu H, Jones CJ et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:49–2139. doi:10.1021/nn900373b

    Article  Google Scholar 

  • Predoi D (2007) A study on iron oxide nanoparticles coated with dextrin obtained by coprecipitation. Dig J Nanomater Biostruct 2:169–173

    Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274. doi:10.1039/b902394a

    Article  Google Scholar 

  • Qiao X, Zhou J, Binks BP et al (2012) Magnetorheological behavior of Pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles. Colloids Surf A 412:20–28. doi:10.1016/j.colsurfa.2012.06.026

    Article  Google Scholar 

  • Saha A, Nikova A, Venkataraman P et al (2013) Oil emulsification using surface-tunable carbon black particles. ACS Appl Mater Interfaces 5:3094–3100

    Article  Google Scholar 

  • Shen L, Laibinis PEP, Hatton TAT (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453. doi:10.1021/la9807661

    Article  Google Scholar 

  • Shukla N, Liu C, Jones PM, Weller D (2003) FTIR study of surfactant bonding to FePt nanoparticles. J Magn Magn Mater 266:178–184. doi:10.1016/S0304-8853(03)00469-4

    Article  Google Scholar 

  • Smith B (1998) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton

  • Sovilj V, Milanovic J, Petrovic L (2013) Influence of gelatin–sodium stearoyl lactylate interaction on the rheological properties of gelatin gels. Colloids Surf A 417:211–216. doi:10.1016/j.colsurfa.2012.11.009

    Article  Google Scholar 

  • Sullivan AP, Kilpatrick PK (2002) The effects of inorganic solid particles on water and crude oil emulsion stability. Ind Eng Chem Res 41:3389–3404. doi:10.1021/ie010927n

    Article  Google Scholar 

  • Torres Galvis HM, Bitter JH, Khare CB et al (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:8–835. doi:10.1126/science.1215614

    Article  Google Scholar 

  • Wang CY, Hong JM, Chen G et al (2010) Facile method to synthesize oleic acid-capped magnetite nanoparticles. Chin Chem Lett 21:179–182. doi:10.1016/j.cclet.2009.10.024

    Article  Google Scholar 

  • Whitehurst R (2008) Emulsifiers in food technology. Wiley, New York

  • Wu N, Fu L, Su M et al (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383–386. doi:10.1021/nl035139x

    Article  Google Scholar 

  • Yang K, Peng H, Wen Y, Li N (2010) Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci 256:3093–3097. doi:10.1016/j.apsusc.2009.11.079

    Article  Google Scholar 

  • Yeh JT, Pennline HW, Resnik KP, Rygle K (2005) Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86:1533–1546. doi:10.1016/j.fuproc.2005.01.015

    Article  Google Scholar 

  • Zhang L, He R, Gu H (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617. doi:10.1016/j.apsusc.2006.05.023

    Article  Google Scholar 

  • Zhang K, Wu W, Guo K et al (2009) Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A 349:110–116. doi:10.1016/j.colsurfa.2009.08.005

    Article  Google Scholar 

  • Zhou J, Wang L, Qiao X et al (2012) Pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles. J Colloid Interface Sci 367:24–213. doi:10.1016/j.jcis.2011.11.001

    Article  Google Scholar 

  • Zinoviadou KG, Moschakis T, Kiosseoglou V, Biliaderis CG (2011) Impact of emulsifier-polysaccharide interactions on the stability and rheology of stabilised oil-in-water emulsions. Procedia Food Sci 1:57–61. doi:10.1016/j.profoo.2011.09.010

    Article  Google Scholar 

  • Zou S, Yang Y, Liu H, Wang C (2013) Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants. Colloids Surf A 436:1–9. doi:10.1016/j.colsurfa.2013.06.013

    Article  Google Scholar 

Download references

Acknowledgements

This research was made possible in part from a grant from The Gulf of Mexico Research Initiative through the Consortium for Molecular Engineering of Dispersant Systems (CMEDS). The authors also thank Dr. Michael Miller and the Auburn University Research and Instrumentation Facility for access to the transmission electron microscope. The authors also greatly appreciate the assistance in the use of characterization equipment by Dr. Allan David, Dr. Virginia Davis, and Steven Moore at Auburn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Roberts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vengsarkar, P.S., Roberts, C.B. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles. J Nanopart Res 16, 2627 (2014). https://doi.org/10.1007/s11051-014-2627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2627-4

Keywords

Navigation