Skip to main content
Log in

Cellular automata and finite groups

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

For a finite group G and a finite set A, we study various algebraic aspects of cellular automata over the configuration space \(A^G\). In this situation, the set \(\mathrm {CA}(G;A)\) of all cellular automata over \(A^G\) is a finite monoid whose basic algebraic properties had remained unknown. First, we investigate the structure of the group of units \(\mathrm {ICA}(G;A)\) of \(\mathrm {CA}(G;A)\). We obtain a decomposition of \(\mathrm {ICA}(G;A)\) into a direct product of wreath products of groups that depends on the numbers \(\alpha _{[H]}\) of periodic configurations for conjugacy classes [H] of subgroups of G. We show how the numbers \(\alpha _{[H]}\) may be computed using the Möbius function of the subgroup lattice of G, and we use this to improve the lower bound recently found by Gao, Jackson and Seward on the number of aperiodic configurations of \(A^G\). Furthermore, we study generating sets of \(\mathrm {CA}(G;A)\); in particular, we prove that \(\mathrm {CA}(G;A)\) cannot be generated by cellular automata with small memory set, and, when all subgroups of G are normal, we determine the relative rank of \(\mathrm {ICA}(G;A)\) on \(\mathrm {CA}(G;A)\), i.e. the minimal size of a set \(V \subseteq \mathrm {CA}(G;A)\) such that \(\mathrm {CA}(G;A) = \langle \mathrm {ICA}(G;A) \cup V \rangle\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Araújo J, Bentz W, Mitchell JD, Schneider C (2015) The rank of the semigroup of transformations stabilising a partition of a finite set. Math Proc Camb Philos Soc 159:339–353

    Article  MathSciNet  MATH  Google Scholar 

  • Araújo J, Schneider C (2009) The rank of the endomorphism monoid of a uniform partition. Semigroup Forum 78:498–510

    Article  MathSciNet  MATH  Google Scholar 

  • Cameron PJ (1994) Combinatorics: topics, techniques, algorithms. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Castillo-Ramirez A, Gadouleau M (2016) Ranks of finite semigroups of one-dimensional cellular automata. Semigroup Forum 93(2):347–362

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Ramirez A, Gadouleau M (2016) On finite monoids of cellular automata. In: Cook M, Neary T (eds.) Cellular automata and discrete complex systems. LNCS 9664, Springer International Publishing, Berlin, 90–104.

  • Ceccherini-Silberstein T, Coornaert M (2010) Cellular automata and groups. Springer monographs in mathematics. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Cyr V, Bryna K (2015) The automorphism group of a shift of linear growth: beyond transitivity. Forum Math Sigma 3(e5):1–27

    MathSciNet  MATH  Google Scholar 

  • Dedekind R (1897) Ueber gruppen, deren sämmtliche theiler normaltheiler sind (German). Math Ann 48(4):548–561

    Article  MathSciNet  MATH  Google Scholar 

  • Dixon JD, Mortimer B (1996) Permutation groups. Graduate texts in mathematics 163. Springer, New York

    Google Scholar 

  • Ganyushkin O, Mazorchuk V (2009) Classical finite transformation semigroups: an introduction. Algebra and applications 9. Springer, London

    Book  MATH  Google Scholar 

  • Gao S, Jackson S, Seward B (2016) Group colorings and bernoulli subflows. Mem Am Math Soc 241(1141):1–239

    MathSciNet  MATH  Google Scholar 

  • Gomes GMS, Howie JM (1987) On the ranks of certain finite semigroups of transformations. Math Proc Camb Philos Soc 101:395–403

    Article  MathSciNet  MATH  Google Scholar 

  • Gray RD (2014) The minimal number of generators of a finite semigroup. Semigroup Forum 89:135–154

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman Y (2012) Large semigroups of cellular automata. Ergod Theory Dyn Syst 32:1991–2010

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkes T, Isaacs IM, Özaydin M (1989) On the möbius function of a finite group. Rocky Mt J Math 19(4):1003–1034

    Article  MATH  Google Scholar 

  • Howie JM, McFadden RB (1990) Idempotent rank in finite full transformation semigroups. Proc Royal Soc Edinb 114A:161–167

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33

    Article  MathSciNet  MATH  Google Scholar 

  • Kerber A (1999) Applied finite group actions, 2nd ed. Algorithms and combinatorics 19, Springer, Berlin

  • Salo V (2015) Groups and monoids of cellular automata. In: Kari J (ed.) Cellular automata and discrete complex systems. LNCS 9099, 17–45, Springer Berlin Heidelberg

Download references

Acknowledgements

This work was supported by the EPSRC grant EP/K033956/1. We kindly thank Turlough Neary and Matthew Cook for their invitation to submit this paper and for the organisation of the conference AUTOMATA 2016. We also thank the referees of this paper for their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alonso Castillo-Ramirez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Ramirez, A., Gadouleau, M. Cellular automata and finite groups. Nat Comput 18, 445–458 (2019). https://doi.org/10.1007/s11047-017-9640-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9640-3

Keywords

Mathematics Subject Classification

Navigation