Skip to main content
Log in

Deoxynivalenol Damages Corneal Epithelial Cells and Exacerbates Inflammatory Response in Fungal Keratitis

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Background

Fungal keratitis (FK) is a kind of infectious keratopathy with a high rate of blindness worldwide. Deoxynivalenol (DON) has been proven to have multiple toxic effects on humans and animals.

Objectives

The aim of this study was to explore a possible pathogenic role of DON in FK.

Methods

We first made an animal model of FK in New Zealand white rabbits, and then attempted to detect DON in a culture medium in which Fusarium solani had been grown and also in the corneal tissue of the animal model of Fusarium solani keratitis. Next, a model of DON damage in human corneal epithelial cells (HCECs) was constructed to evaluate effects of DON on the activity, migration ability, cell cycle, and apoptosis in the HCECs. Then, putative the toxic damaging effects of DON on rabbit corneal epithelial cells and the impact of the repair cycle were studied. The expression levels of inflammatory factors in the corneas of the animal model and in the model of DON-damaged HCECs were measured.

Results

The Fusarium solani strain used in this study appeared to have the potential to produce DON, since DON was detected in the corneal tissue of rabbits which had been inoculated with this Fusarium solani strain. DON was found to alter the morphology of HCECs, to reduce the activity and to inhibit the proliferation and migration of HCECs. DON also induced the apoptosis and S-phase arrest of HCECs. In addition, DON was found to damage rabbit corneal epithelial cells, to prolong the corneal epithelial regeneration cycle, and to be associated with the upregulated expression of inflammatory factors in HCECs and rabbit corneas.

Conclusions

DON appears to have a toxic damaging effect on HCECs in FK, and to induce the expression of inflammatory factors, leading to the exacerbation of keratitis and the formation of new blood vessels. Future studies will explore the possibility of developing a test to detect DON in ophthalmic settings to aid the rapid diagnosis of FK, and to develop DON neutralizers and adsorbents which have the potential to improve keratocyte status, inhibit apoptosis, and alleviate inflammation, therein providing new thinking for therapy of clinical FK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahmoudi S, Masoomi A, Ahmadikia K, Tabatabaei SA, Soleimani M, Rezaie S, Ghahvechian H, Banafsheafshan A. Fungal keratitis: an overview of clinical and laboratory aspects. Mycoses. 2018;61:916–30. https://doi.org/10.1111/myc.12822.

    Article  PubMed  Google Scholar 

  2. Xu Q, Zhao G, Lin J, Wang Q, Hu L, Jiang Z. Role of dectin-1 in the innate immune response of rat corneal epithelial cells to Aspergillus fumigatus. BMC Ophthalmol. 2015;15:126. https://doi.org/10.1186/s12886-015-0112-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomedicine. 2019;14:2515–31. https://doi.org/10.2147/IJN.S190502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garg P, Roy A, Roy S. Update on fungal keratitis. Curr Opin Ophthalmol. 2016;27:333–9. https://doi.org/10.1097/ICU.0000000000000272.

    Article  PubMed  Google Scholar 

  5. Jin X, Feng J, Sun N, Jin H, Wang J, Song Z, Zhang N, Liu Y, Zhang H. A 5-year retrospective analysis of the risk factors, treatment, and prognosis of patients with fungal keratitis in Heilongjiang, China. Am J Ophthalmol. 2022;244:48–57. https://doi.org/10.1016/j.ajo.2022.07.023.

    Article  PubMed  Google Scholar 

  6. Liu MY, Zhang L, Yin XL, Sun SY. Endophthalmitis associated with fungal keratitis and penetrating injuries in North China. Eur J Ophthalmol. 2020;30:455–61. https://doi.org/10.1177/1120672119833896.

    Article  PubMed  Google Scholar 

  7. Bourcier T, Sauer A, Dory A, Denis J, Sabou M. Fungal keratitis. J Fr Ophtalmol. 2017;40:e307–13. https://doi.org/10.1016/j.jfo.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  8. Mills B, Radhakrishnan N, Rajapandian SGK, Rameshkumar G, Lalitha P, Prajna NV. The role of fungi in fungal keratitis. Exp Eye Res. 2021;202:108372. https://doi.org/10.1016/j.exer.2020.108372.

    Article  CAS  PubMed  Google Scholar 

  9. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem. 2017;65:7052–70. https://doi.org/10.1021/acs.jafc.6b03413.

    Article  CAS  PubMed  Google Scholar 

  10. Bräse S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev. 2009;109:3903. https://doi.org/10.1021/cr050001f.

    Article  CAS  PubMed  Google Scholar 

  11. Gurbuzel M, Uysal H, Kizilet H. Assessment of genotoxic potential of two mycotoxins in the wing spot test of Drosophila melanogaster. Toxicol Ind Health. 2015;31:261–7. https://doi.org/10.1177/0748233712472528.

    Article  CAS  PubMed  Google Scholar 

  12. Eskola M, Elliott CT, Hajslova J, Steiner D, Krska R. Towards a dietary-exposome assessment of chemicals in food: an update on the chronic health risks for the European consumer. Crit Rev Food Sci Nutr. 1890;2020:60. https://doi.org/10.1080/10408398.2019.1612320.

    Article  CAS  Google Scholar 

  13. Alshannaq A, Yu JH. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 2017;14:6. https://doi.org/10.3390/ijerph14060632.

    Article  CAS  Google Scholar 

  14. Niknejad F, Escriva L, Adel Rad KB, Khoshnia M, Barba FJ, Berrada H. Biomonitoring of multiple mycotoxins in urine by GC-MS/MS: a pilot study on patients with esophageal cancer in Golestan province, Northeastern Iran. Toxins. 2021;13:243. https://doi.org/10.3390/toxins13040243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei R, Jiang N, Zhang Q, Hu S, Dennis BS, He S, Guo X. Prevalence of selenium, T-2 Toxin, and deoxynivalenol in kashin-beck disease areas in Qinghai province, Northwest China. Biol Trace Elem Res. 2016;171:34–40. https://doi.org/10.1007/s12011-015-0495-0.

    Article  CAS  PubMed  Google Scholar 

  16. Tomaszewska E, Rudyk H, Swietlicka I, Hulas-Stasiak M, Donaldson J, Arczewska M, Muszynski S, Dobrowolski P, Puzio I, Kushnir V, et al. The influence of prenatal fumonisin exposure on bone properties, as well as OPG and RANKL expression and immunolocalization, in newborn offspring is sex and dose dependent. Int J Mol Sci. 2021;22:13234. https://doi.org/10.3390/ijms222413234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urbaniak M, Waskiewicz A, Stepien L. Fusarium cyclodepsipeptide mycotoxins: chemistry, biosynthesis, and occurrence. Toxins. 2020;12:765. https://doi.org/10.3390/toxins12120765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumarah MW. The deoxynivalenol challenge. J Agric Food Chem. 2022;70:9619–24. https://doi.org/10.1021/acs.jafc.2c03690.

    Article  CAS  PubMed  Google Scholar 

  19. Hsia CC, Wu ZY, Li YS, Zhang F, Sun ZT. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncol Rep. 2004;12:449–56. https://doi.org/10.3892/or.12.2.449.

    Article  CAS  PubMed  Google Scholar 

  20. Marasas WF, Van Rensburg SJ, Mirocha CJ. Incidence of Fusarium species and the mycotoxins, deoxynivalenol and zearalenone, in corn produced in esophageal cancer areas in Transkei. J Agric Food Chem. 1979;27:1108–12. https://doi.org/10.1021/jf60225a013.

    Article  CAS  PubMed  Google Scholar 

  21. Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: a comprehensive review. Sci Total Environ. 2022;806:151192. https://doi.org/10.1016/j.scitotenv.2021.151192.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Yang T, Fan TJ, Xu B. Norfloxacin induces apoptosis and necroptosis in human corneal epithelial cells. Toxicol Vitro. 2020;66:104868. https://doi.org/10.1016/j.tiv.2020.104868.

    Article  CAS  Google Scholar 

  23. Raza SK, Mallet AI, Howell SA, Thomas PA. An in-vitro study of the sterol content and toxin production of Fusarium isolates from mycotic keratitis. J Med Microbiol. 1994;41:204–8. https://doi.org/10.1099/00222615-41-3-204.

    Article  CAS  PubMed  Google Scholar 

  24. Lee JY, Lim W, Park S, Kim J, You S, Song G. Deoxynivalenol induces apoptosis and disrupts cellular homeostasis through MAPK signaling pathways in bovine mammary epithelial cells. Environ Pollut. 2019;252:879–87. https://doi.org/10.1016/j.envpol.2019.06.001.

    Article  CAS  PubMed  Google Scholar 

  25. Li W, Sang Y, Zhang G. Combined cytotoxicity of aflatoxin B1 and deoxynivalenol to hepatoma HepG2/C3A cells. World Mycotoxin Journal. 2017;10:387–99. https://doi.org/10.3920/wmj2017.2212.

    Article  CAS  Google Scholar 

  26. Wang X, Fan M, Chu X, Zhang Y, Rahman SU, Jiang Y, Chen X, Zhu D, Feng S, Li Y, et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway. Toxicon. 2018;155:1–8. https://doi.org/10.1016/j.toxicon.2018.09.006.

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Huang T, Li X, Huang Z. Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B(1) and deoxynivalenol in Chinese traditional medicine. J Pharm Biomed Anal. 2020;177:112895. https://doi.org/10.1016/j.jpba.2019.112895.

    Article  CAS  PubMed  Google Scholar 

  28. Han L, Li YT, Jiang JQ, Li RF, Fan GY, Lv JM, Zhou Y, Zhang WJ, Wang ZL. Development of a direct competitive ELISA kit for detecting deoxynivalenol contamination in wheat. Molecules. 2019;25:50. https://doi.org/10.3390/molecules25010050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmeits PC, Katika MR, Peijnenburg AA, van Loveren H, Hendriksen PJ. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicol Lett. 2014;224:395–406. https://doi.org/10.1016/j.toxlet.2013.11.005.

    Article  CAS  PubMed  Google Scholar 

  30. Dai Y, Xie H, Xu Y. Evaluation of deoxynivalenol-induced toxic effects on mouse endometrial stromal cells: cell apoptosis and cell cycle. Biochem Biophys Res Commun. 2017;483:572–7. https://doi.org/10.1016/j.bbrc.2016.12.103.

    Article  CAS  PubMed  Google Scholar 

  31. Lu P, Li L, Liu G, Baba T, Ishida Y, Nosaka M, Kondo T, Zhang X, Mukaida N. Critical role of TNF-alpha-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization. Invest Ophthalmol Vis Sci. 2012;53:3516–26. https://doi.org/10.1167/iovs.10-5548.

    Article  CAS  PubMed  Google Scholar 

  32. Yu H, Sun L, Cui J, Li Y, Yan Y, Wei X, Wang C, Song F, Jiang W, Liu Y, et al. Three kinds of corneal host cells contribute differently to corneal neovascularization. EBioMedicine. 2019;44:542–53. https://doi.org/10.1016/j.ebiom.2019.05.026.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 2007;92:50–7. https://doi.org/10.1159/000099253.

    Article  CAS  PubMed  Google Scholar 

  34. Ghasemi H, Ghazanfari T, Yaraee R, Faghihzadeh S, Hassan ZM. Roles of IL-8 in ocular inflammations: a review. Ocul Immunol Inflamm. 2011;19:401–12. https://doi.org/10.3109/09273948.2011.618902.

    Article  CAS  PubMed  Google Scholar 

  35. Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63:15–22. https://doi.org/10.22336/rjo.2019.4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghasemi H. Roles of IL-6 in ocular inflammation: a review. Ocul Immunol Inflamm. 2018;26:37–50. https://doi.org/10.1080/09273948.2016.1277247.

    Article  CAS  PubMed  Google Scholar 

  37. Peng L, Zhong J, Xiao Y, Wang B, Li S, Deng Y, He D, Yuan J. Therapeutic effects of an anti-IL-6 antibody in fungal keratitis: macrophage inhibition and T cell subset regulation. Int Immunopharmacol. 2020;85:106649. https://doi.org/10.1016/j.intimp.2020.106649.

    Article  CAS  PubMed  Google Scholar 

  38. Pokharel SM, Chiok K, Shil NK, Mohanty I, Bose S. Tumor necrosis factor-alpha utilizes MAPK/NFkappaB pathways to induce cholesterol-25 hydroxylase for amplifying pro-inflammatory response via 25-hydroxycholesterol-integrin-FAK pathway. PLoS ONE. 2021;16:e0257576. https://doi.org/10.1371/journal.pone.0257576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng C, Ouyang Y, Lu N, Li N. The NF-kappaB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol. 2020;11:1387. https://doi.org/10.3389/fimmu.2020.01387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Ma L, Liu T, Ge C, Zhou Q, Wei C, Shi W. TIPE2 suppresses Pseudomonas aeruginosa keratitis by inhibiting NF-kappaB signaling and the infiltration of inflammatory cells. J Infect Dis. 2019;220:1008–18. https://doi.org/10.1093/infdis/jiz246.

    Article  CAS  PubMed  Google Scholar 

  41. Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the crosstalk between Nrf2 and NF-kappaB response pathways in drug-induced toxicity. Front Cell Dev Biol. 2021;9:809952. https://doi.org/10.3389/fcell.2021.809952.

    Article  PubMed  Google Scholar 

  42. Wei L, Guo Y, Ding X, Guo C, Ge N, Ren D, Wang H. The liver X receptor agonist T0901317 reduces the inflammation of alveolar epithelial cells induced by polyhexamethylene guanidine through inhibition of the NFkappaB signaling pathway. Ann Transl Med. 2021;9:1795. https://doi.org/10.21037/atm-21-6501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu L, Du L, Ju Q, Chen Z, Ma Y, Bai T, Ji G, Wu Y, Liu Z, Shao Y, et al. Silencing TLR4/MyD88/NF-kappaB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE. Inflammation. 2021;44:633–44. https://doi.org/10.1007/s10753-020-01363-1.

    Article  CAS  PubMed  Google Scholar 

  44. Tang M, Yang Y, Yu J, Qiu J, Chen P, Wu Y, Wang Q, Xu Z, Ge J, Yu K, et al. Tetramethylpyrazine in a murine alkali-burn model blocks NFkappaB/NRF-1/CXCR4-signaling-induced corneal neovascularization. Invest Ophthalmol Vis Sci. 2018;59:2133–41. https://doi.org/10.1167/iovs.17-23712.

    Article  CAS  PubMed  Google Scholar 

  45. Swamynathan S, Loughner CL, Swamynathan SK. Inhibition of HUVEC tube formation via suppression of NFkappaB suggests an anti-angiogenic role for SLURP1 in the transparent cornea. Exp Eye Res. 2017;164:118–28. https://doi.org/10.1016/j.exer.2017.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niu Y, Ren C, Peng X, Li C, Xu Q, Hu L, Zhang Z, Zhao G, Lin J. IL-36alpha exerts proinflammatory effects in Aspergillus fumigatus keratitis of mice through the pathway of IL-36alpha/IL-36R/NF-kappaB. Invest Ophthalmol Vis Sci. 2021;62:16. https://doi.org/10.1167/iovs.62.4.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China, Grant number: 81970806, 82271094 and Science and Technology Projects in Guangzhou, Grant number: 202201020030, 202201020015.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, experimentation and analysis were performed by QS, QL, SM, CW, CL, and XF. The first draft of the manuscript was written by QS. The manuscript was reviewed and edited by SM, JZ and LL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingxiang Zhong or Lian Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The animal study protocol was approved by the Laboratory Animal Ethics Committee of Jinan University (protocol code No. IACUC-20210324-01) for studies involving animals.

Additional information

Handling Editor: Philip Aloysius Thomas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Li, Q., Wu, C. et al. Deoxynivalenol Damages Corneal Epithelial Cells and Exacerbates Inflammatory Response in Fungal Keratitis. Mycopathologia 189, 28 (2024). https://doi.org/10.1007/s11046-024-00829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11046-024-00829-2

Keywords

Navigation