Skip to main content
Log in

Rhodotorula sp. and Trichosporon sp. are more Virulent After a Mixed Biofilm

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Rhodotorula spp. and Trichosporon spp. are opportunistic pathogens, and although an association between these two species in the same infection appears to be uncommon, it has been reported. This is the first study that aimed to evaluate the pathogenesis of a co-infection by R. mucilaginosa and T. asahii, using a new in vivo model, the Zophobas morio larvae. Suspensions from planktonic and biofilm-recovered cells were injected in the larvae as in monospecies as mixed (a ratio of 1:1 for both agents of a of 105 inoculum). Individual and mixed biofilms of R. mucilaginosa and T. asahii were produced for 24 and 48 h, and they were partially characterized by crystal violet and reduction of tetrazolium salt. When evaluating the impact of the planktonic suspension in vivo we verified that the fungi in monoculture were more able to kill the larvae than those from planktonic mixed suspension. On the other hand, regarding biofilm-recovered cells, there was an increase in the death of larvae infected for mixed suspensions. Moreover, the death rate was more pronounced when the larvae were infected with 48 h biofilm-recovered cells than the 24 h ones. T. asahii was the best producer of total biomass, mainly in 48 h. The metabolic activity for both yeasts organized in biofilm maintained the same pattern between 24 and 48 h. The present study proves a synergistic interaction between R. mucilaginosa and T. asahii after an experience in a mixed biofilm. Our results suggest that both species were benefited from this interaction, acquiring a greater potential for virulence after passing through the biofilm and this ability was acquired by the cells released from the biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jarros IC, Veiga FF, Corrêa JL, Barros ILE, Gadelha MC, Voidaleski MF, et al. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI J. 2020;19:687–704.

    PubMed  PubMed Central  Google Scholar 

  2. Singh S, Capoor MR, Varshney S, Gupta DK, Verma PK, Ramesh V. Epidemiology and antifungal susceptibility of infections caused by spec- and non-yeast worldwide. Indian J Med Microbiol. 2019;37:536–41. https://doi.org/10.4103/ijmm.IJMM_19_146.

    Article  PubMed  Google Scholar 

  3. Ioannou P, Vamvoukaki R, Samonis G. Rhodotorula species infections in humans: a systematic review. Mycoses. 2019;62:90–100. https://doi.org/10.1111/myc.12856.

    Article  PubMed  Google Scholar 

  4. Colombo AL, Padovan ACB, Chaves GM. Current knowledge of Trichosporon spp and Trichosporonosis. Clin Microbiol Rev. 2011;24:682–700. https://doi.org/10.1128/CMR.00003-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang E, Sugita T, Tsuboi R, Yamazaki T, Makimura K. The opportunistic yeast pathogen Trichosporon asahii colonizes the skin of healthy individuals: analysis of 380 healthy individuals by age and gender using a nested polymerase chain reaction assay. Microbiol Immunol. 2011;55:483–8. https://doi.org/10.1111/j.1348-0421.2011.00341.x.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M. Susceptibility profile of 29 clinical isolates of Rhodotorula spp and literature review. J Antimicrob Chemother. 2005;55:312–6. https://doi.org/10.1093/jac/dki020.

    Article  CAS  PubMed  Google Scholar 

  7. Ge G, Li D, Mei H, Lu G, Zheng H, Liu W, et al. Different toenail onychomycosis due to Rhodotorula mucilaginosa and Candida parapsilosis in an immunocompetent young adult. Medical Mycology Case Reports. 2019. p. 69–71. http://dx.doi.org/https://doi.org/10.1016/j.mmcr.2019.04.012

  8. Pârvu M, Moţ CA, Pârvu AE, Mircea C, Stoeber L, Roşca-Casian O, et al. Allium sativum extract chemical composition, antioxidant activity and antifungal effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa causing onychomycosis. Molecules. 2019. p. 3958. http://dx.doi.org/https://doi.org/10.3390/molecules24213958

  9. Francisco EC, de Almeida Junior JN, de Queiroz TF, Aquino VR, Mendes AVA, de Andrade Barberino MGM, et al. Species distribution and antifungal susceptibility of 358 Trichosporon clinical isolates collected in 24 medical centres. Clin Microbiol Infect. 2019;25:909.e1-909.e5. https://doi.org/10.1016/j.cmi.2019.03.026.

    Article  CAS  Google Scholar 

  10. Vasconcellos C, Pereira CQM, Souza MC, Pelegrini A, Freitas RS, Takahashi JP. Identification of fungi species in the onychomycosis of institutionalized elderly. An Bras Dermatol. 2013;88:377–80. https://doi.org/10.1590/abd1806-4841.20131884.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Idris NFB, Huang G, Jia Q, Yuan L, Li Y, Tu Z. Mixed infection of toe nail caused by Trichosporon asahii and Rhodotorula mucilaginosa. Mycopathologia. 2019. https://doi.org/10.1007/s11046-019-00406-y.

    Article  PubMed  Google Scholar 

  12. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Current Opinion in Microbiology. 2014. p. 96–104. http://dx.doi.org/https://doi.org/10.1016/j.mib.2014.02.008

  13. Garcia LM, Costa-Orlandi CB, Bila NM, Vaso CO, Gonçalves LNC, Fusco-Almeida AM, et al. A two-way road: antagonistic interaction between dual-species biofilms formed by Candida albicans/Candida parapsilosis and Trichophyton rubrum. Front Microbiol. 2020;11:1980. https://doi.org/10.3389/fmicb.2020.01980.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harris MR, Coote PJ. Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in vitro. International Journal of Antimicrobial Agents. 2010. p. 347–56. http://dx.doi.org/https://doi.org/10.1016/j.ijantimicag.2009.11.021

  15. Olson ML, Jayaraman A, Kao KC. Relative abundances of Candida albicans and Candida glabrata in coculture biofilms impact biofilm structure and formation. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.02769-17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME J. 2014;8:1974–88. https://doi.org/10.1038/ismej.2014.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta AK, Foley KA. Evidence for biofilms in onychomycosis. G Ital Dermatol Venereol. 2019;154:50–5. https://doi.org/10.23736/S0392-0488.18.06001-7.

    Article  PubMed  Google Scholar 

  18. Faergemann J, Baran R. Epidemiology, clinical presentation and diagnosis of onychomycosis. Br J Dermatol. 2003;149(Suppl 65):1–4. https://doi.org/10.1046/j.1365-2133.149.s65.4.x.

    Article  PubMed  Google Scholar 

  19. Paškevičius A, Švedienė J, Kiverytė S, Bridžiuvienė D, Vaitonis G, Jablonskienė V. Candida distribution in onychomycosis and in vitro susceptibility to antifungal agents. Acta Dermatovenerol Cro At. 2020;28:204–9.

    Google Scholar 

  20. de Souza PC, Morey AT, Castanheira GM, Bocate KP, Panagio LA, Ito FA, et al. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. J Microbiol Methods. 2015;118:182–6. https://doi.org/10.1016/j.mimet.2015.10.004.

    Article  PubMed  Google Scholar 

  21. Negri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis biofilms: biomass, metabolic activity and secreted aspartyl proteinase production. Mycopathol. 2016;181:217–24. https://doi.org/10.1007/s11046-015-9964-4.

    Article  CAS  Google Scholar 

  22. Du M, Liu X, Xu J, Li S, Wang S, Zhu Y, et al. Antimicrobial effect of Zophobas morio hemolymph against bovine mastitis pathogens. Microorganisms. 2020. p. 1488. http://dx.doi.org/https://doi.org/10.3390/microorganisms8101488

  23. Tokarev YS, Malysh SM, Volodartseva YV, Gerus AV, Berezin MV. Molecular identification of a densovirus in healthy and diseased Zophobas morio (Coleoptera, Tenebrionidae). Intervirol. 2019;62:222–6. https://doi.org/10.1159/000508839.

    Article  CAS  Google Scholar 

  24. Carvalho MC, Tomazini A, Prado RA, Viviani VR. Selective inhibition of Zophobas morio (Coleoptera: Tenebrionidae) luciferase-like enzyme luminescence by diclofenac and potential suitability for light-off biosensing. Luminescence. 2021;36:367–76. https://doi.org/10.1002/bio.3952.

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos JD, dos Santos JD, Piva E, Vilela SFG, Jorge AOC, Junqueira JC. Mixed biofilms formed by C albicans and non-albicans species: a study of microbial interactions. Brazilian Oral Res. 2016. https://doi.org/10.1590/1807-3107bor-2016.vol30.0023.

    Article  Google Scholar 

  26. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010;6: e1000828. https://doi.org/10.1371/journal.ppat.1000828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thet NT, Wallace L, Wibaux A, Boote N, Jenkins ATA. Development of a mixed-species biofilm model and its virulence implications in device related infections. J Biomed Mater Res B Appl Biomater. 2019;107:129–37. https://doi.org/10.1002/jbm.b.34103.

    Article  CAS  PubMed  Google Scholar 

  28. Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16:19–31. https://doi.org/10.1038/nrmicro.2017.107.

    Article  CAS  PubMed  Google Scholar 

  29. Iñigo M, Del Pozo JL. Fungal biofilms: From bench to bedside. Rev Esp Quimioter. 2018;31(Suppl 1):35–8.

    PubMed  Google Scholar 

  30. Demuyser L, Jabra-Rizk MA, Van Dijck P. Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathog Dis. 2014;70:219–30. https://doi.org/10.1111/2049-632X.12123.

    Article  CAS  PubMed  Google Scholar 

  31. Biegańska MJ, Rzewuska M, Dąbrowska I, Malewska-Biel B, Ostrzeszewicz M, Dworecka-Kaszak B. Mixed infection of respiratory tract in a dog caused by Rhodotorula mucilaginosa and Trichosporon jirovecii: a case report. Mycopathologia. 2018. p. 637–44. http://dx.doi.org/https://doi.org/10.1007/s11046-017-0227-4

  32. Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig. 2013;25:31–42. https://doi.org/10.7416/ai.2013.1904.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) no. 421620/2018-8 and Fundação de Amparo à Pesquisa do Estado do Paraná (Fundação Araucária).

Author information

Authors and Affiliations

Authors

Contributions

Isabele Carrilho Jarros: Conceived of or designed study, Performed research, Analyzed data and Wrote the paper. Isabella Letícia Esteves Barros: Performed research and Analyzed data. Andressa Prado: Performed research. Jakeline Luiz Corrêa: Performed research. Amanda Milene Malacrida: Analyzed data and Wrote the paper. Melyssa Negri: Analyzed data and Wrote the paper. Terezinha Inez Estivalet Svidzinski: Conceived of or designed study, Analyzed data and Wrote the paper.

Corresponding author

Correspondence to Terezinha Inez Estivalet Svidzinski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Damien Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarros, I.C., Barros, I.L.E., Prado, A. et al. Rhodotorula sp. and Trichosporon sp. are more Virulent After a Mixed Biofilm. Mycopathologia 187, 85–93 (2022). https://doi.org/10.1007/s11046-021-00606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00606-5

Keywords

Navigation