Skip to main content

Advertisement

Log in

The Molecular Identification and Antifungal Susceptibilities of Aspergillus Species Causing Otomycosis in Tochigi, Japan

  • Original Paper
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Aspergillus species are the most common pathogenic fungi involved in otomycosis, an infection of the outer ear canal. In this study, we examined the incidence of Aspergillus infections and the antifungal susceptibilities of 30 Aspergillus species isolates from patients with otomycosis who visited Saiseikai Utsunomiya Hospital between August 2013 and July 2016. Based on the morphological test results, the strains were identified as Aspergillus niger sensu lato (20 strains), A. terreus sensu lato (7 strains), and A. fumigatus sensu lato (3 strains). In contrast, the molecular identifications based on analyzing the isolates’ partial β-tubulin gene sequences revealed them to be A. niger sensu stricto (12 strains), A. tubingensis (8 strains), A. terreus sensu stricto (7 strains), and A. fumigatus sensu stricto (3 strains). The antifungal susceptibility test results indicated that strains of A. tubingensis and A. niger sensu stricto displayed lower susceptibilities to ravuconazole, compared with the other isolates. The Aspergillus strains from this study showed low minimum inhibitory concentrations toward the azole-based drugs efinaconazole, lanoconazole, and luliconazole. Therefore, these topical therapeutic agents may be effective for the treatment of otomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Satish HS, Viswanatha B, Manjuladevi M. A clinical study of otomycosis. IOSR J Dent Med Sci. 2013;5(2):2279–0861.

  2. Jia X, Liang Q, Chi F, Cao W. Otomycosis in Shanghai: aetiology, clinical features and therapy. Mycoses. 2012;55:404–9.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Agudo L, Aznar-Marin L, Galan-Sanchez F, Garcia-Martos P, Marin-Casanova P, Rodrigues-Iglesias M. Otomycosis due to filamentous fungi. Mycopathologia. 2011;172:307–10.

    Article  PubMed  Google Scholar 

  4. Fasunla J, Ibekwe T, Onakoya P. Otomycosis in western Nigeria. Mycoses. 2007;51:67–70.

    Google Scholar 

  5. Kaya DA, Kiaz N. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole. Mycoses. 2007;50:447–50.

    Article  CAS  PubMed  Google Scholar 

  6. Egami T, Noguchi M, Ueda S. Mycosis in the ear, nose and throat. Jpn J Med Mycol. 2003;44:277–83 (in Japanese with English abstract).

    Article  Google Scholar 

  7. Gheith S, Saghrouni F, Bannour W, Youssef YB, Khelif A, Normand AC, Piarroux R, Said MB, Njah M, Ranque S. In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. SpringerPlus. 2014;19:1–8.

    Google Scholar 

  8. Hendrickx M, Beguin H, Detandt M. Genetic re-identification and antifungal susceptibility testing of Aspergillus section Nigri strains of the BCCM/IHEM collection. Mycoses. 2011;55:148–55.

    PubMed  Google Scholar 

  9. Balajee SA, Kano R, Baddly JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T. Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47:3138–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rordriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53:4514–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alastruey-Lzquierdo A, Mellado E, Pelaez T, Peman J, Zapico S, Alvarez M, Rodriguez-Tudela J, Cuenca-Estrella M. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP study). Antimicrob Agents Chemother. 2013;57:3380–7.

    Article  CAS  Google Scholar 

  12. Li Y, Wan Z, Liu W, Li R. Identification and susceptibility of Aspergillus section nigri in China: prevalence of species and paradoxical growth in response to echinocandins. J Clin Microbiol. 2015;53:702–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gautier M, Normand AC, L’Ollivier C, Cassagne C, Reynaud-Gaubert M, Dubus JD, Bregeon F, Hendrickx M, Gomez C, Ranque S, Piarroux R. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease. Med Mycol. 2016;54:459–70.

    Article  CAS  PubMed  Google Scholar 

  14. Szigeti G, Kocsube S, Doczi I, Bereczki L, Vagvolgy C, Varga J. Molecular identification and antifungal susceptibilities of black Aspergillus isolates from otomycosis cases in Hungary. Mycopathologia. 2012;174:143–7.

    Article  CAS  PubMed  Google Scholar 

  15. Szigeti G, Sedaghati E, Mahmoudabadi AZ, Naseri A, Kocsube S, Vagvolgyi C, Varga J. Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses. 2012;55:333–8.

    Article  PubMed  Google Scholar 

  16. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal Susceptibility Patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52(4):1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anwar K, Gohar MS. Otomycosis; clinical features, predisposing factors and treatment implications. Pak J Med Sci. 2014;30(3):564–7.

    PubMed  PubMed Central  Google Scholar 

  18. Siu WJJ, Tatsumi Y, Senda H, Pillai R, Nakamura T, Sone D, Fothergill A. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother. 2013;57:1610–6.

    Article  CAS  Google Scholar 

  19. Tupaki-Sreepurna A, Jishnu BT, Thanneru V, Sharma S, Gopi A, Sundaram M, Kindo AJ. An assessment of in vitro antifungal activities of efinaconazole and itraconazole against common non-dermatophyte fungi causing onychomycosis. J Fungi. 2017;20:1–8.

    Google Scholar 

  20. De Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi, 2nd edn. Washington: American Society for Microbiology; 2014. p. 442–3.

  21. Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanzawa R, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol. 1999;37:920–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Satoh K, Yamazaki T, Nakayama T, Umeda Y, Alshahni MM, Makimura M, Makimura K. Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiol Immunol. 2016;60:295–302.

    Article  CAS  PubMed  Google Scholar 

  23. Clinical and Laboratory Standards Institute. M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd edn; 2008. Vol. 28 No. 16.

  24. Ishidaira H, Hoshi S, Nagai K, Tamura Y, Takano M, Sakai T. Epidemiological study of the isolation of Aspergillus species from 2000 to 2011 at Nagaoka Red Cross Hospital. Igakukensa. 2014;63:486–91 (in Japanese with English abstract).

    CAS  Google Scholar 

  25. Barati B, Okhovvat SAR, Goljanian A, Omrani MR. Otomycosis in central Iran: a clinical and mycological study. Iran Red Crescent Med J. 2011;13:873–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Viswanatha B, Sumatha D, Vijayashree MS. Otomycosis in immunocompetent and immunocompromised patients: comparative study and literature review. Ear Nose Throat J. 2012;91:114–20.

    Article  PubMed  Google Scholar 

  27. Kathuria S, Shashta C, Singh PK, Agarwal P, Agarwal K, Hagen F, Meis JF, Chowdhary A. Molecular epidemiology and in vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS ONE. 2015;10:1–17.

    Article  CAS  Google Scholar 

  28. Pfaller MA, Merrer SA, Hollis RJ, Jones RN. Sentry participants group antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY antimicrobial surveillance program, 2000. Antimicrob Agents Chemother. 2002;46:1032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Garcia-Effron G, Monzon A, Rodriguez-Tudela JL. In vitro activity of ravuconazole against 923 clinical isolates of nondermatophyte filamentous fungi. Antimicrob Agents Chemother. 2005;49:5136–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiratani T, Uchida K, Yamaguchi H, Oka H, Niwano Y, Ohmi T, Uchida M. In vitro antifungal activity of NND-318, a new antimycotic. Jpn J Med Mycol. 1992;33:321–8 (in Japanese with English abstract).

    Article  CAS  Google Scholar 

  31. Uchida K, Nichiyama Y, Yamaguchi H. In vitro antifungal activity of luliconazole (NND-502), a novel imidazole antifungal agent. J Infect Chemother. 2004;10:216–9.

    Article  CAS  PubMed  Google Scholar 

  32. Abastabar M, Rahimi N, Meis JF, Aslani N, Khodavaisy S, Nabili M, Rezaei-Matehkolaei A, Makimura K, Badali H. Potent activities of novel imidazoles lanoconazole and luliconazole against a collection of azole-resistant and susceptible Aspergillus fumigatus strains. Antimicrob Agents Chemother. 2016;60:6916–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues in our laboratory at Saiseikai Utsunomiya Hospital for their help with this study. We thank Ms. Yoshiko Umeda, Laboratory Space and Environmental Medicine, Teikyo University, for technical assistance. We also thank Lesley Benyon, Ph.D., and Sandra Cheesman, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This research was partially supported by the Research Program on Emerging and Re-emerging Infectious Diseases from the Japan Agency for Medical Research and development, AMED under Grant Number JP18fk0108008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Makimura.

Ethics declarations

Conflict of interest

The authors alone are responsible for the content of the paper and declare that they have no conflicts of interest to declare.

Additional information

Handling Editor: Cunwei Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagiwara, S., Tamura, T., Satoh, K. et al. The Molecular Identification and Antifungal Susceptibilities of Aspergillus Species Causing Otomycosis in Tochigi, Japan. Mycopathologia 184, 13–21 (2019). https://doi.org/10.1007/s11046-018-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-018-0299-9

Keywords

Navigation