Skip to main content
Log in

In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri Complex

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Black aspergilli, particularly Aspergillus niger and A. tubingensis, are the most common etiological agents of otomycosis followed by onychomycosis, pulmonary aspergillosis and aspergilloma. However, so far there is no systematic study on their antifungal susceptibility profiles. A collection of 124 clinical and environmental species of black aspergilli consisted of A. niger, A. tubingensis, A. uvarum. A. acidus and A. sydowii were verified by DNA sequencing of the partial β-tubulin gene. MICs of amphotericin B, itraconazole, voriconazole, posaconazole, and MECs of caspofungin were performed based on CLSI M38-A2. Posaconazole and caspofungin had the lowest MIC range (0.016–0.125 µg/ml and 0.008–0.031 µg/ml, respectively), followed by amphotericin B (0.25–4 µg/ml), voriconazole (0.125–16 µg/ml) and itraconazole (0.25 to >16) in an increasing order. Some strains of A. niger showed high MIC value for itraconazole and voriconazole (>16 µg/ml), in contrast only environmental isolates of A. tubingensis had high itraconazole MICs (>16 µg/ml). These results confirm that posaconazole and caspofungin are potential drugs for treatment of aspergillosis due to opportunistic agents of Aspergillus Nigri complex. However, in vivo efficacy remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarca ML, Accensi F, Cano J, Cabañes FJ. Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek. 2004;86(1):33–49.

    Article  CAS  PubMed  Google Scholar 

  2. Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100(2):205–26.

    Article  CAS  PubMed  Google Scholar 

  3. Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA. Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol. 2011;115(11):1138–50.

    Article  CAS  PubMed  Google Scholar 

  4. Kaya AD, Kiraz N. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole. Mycoses. 2007;50(6):447–50.

    Article  CAS  PubMed  Google Scholar 

  5. Hilmioğlu-Polat S, Metin D, Inci R, Dereli T, Kılınc I, Tümbay E. Non-dermatophytic molds as agents of onychomycosis in Izmir, Turkey—a prospective study. Mycopathologia. 2005;160(2):125–8.

    Article  PubMed  Google Scholar 

  6. Gheith S, Saghrouni F, Bannour W, Ben Youssef Y, Khelif A, Normand AC, et al. Characteristics of invasive aspergillosis in neutropenic haematology patients (Sousse, Tunisia). Mycopathologia. 2014;177(5):281–9.

    Article  PubMed  Google Scholar 

  7. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11.

    Article  PubMed  Google Scholar 

  8. Hendrickx M, Beguin H, Detandt M. Genetic re-identification and antifungal susceptibility testing of Aspergillus section Nigri strains of the BCCM/IHEM collection. Mycoses. 2012;55(2):148–55.

    CAS  PubMed  Google Scholar 

  9. Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother. 2011;55(10):4802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zarei F, Mirhendi H, Fakhim H, Geramishoar M. The first case of onychomycosis due to Aspergillus uvarum (section Nigri). Mycoses. 2015;58(4):239–42.

    Article  PubMed  Google Scholar 

  11. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53(10):4514–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chowdhary A, Kathuria S, Xu J, Meis JF. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013;9(10):e1003633.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chowdhary A, Sharma C, van den Boom M, Yntema JB, Hagen F, Verweij PE, et al. Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother. 2014;69(11):2979–83.

    Article  CAS  PubMed  Google Scholar 

  14. Badali H, Vaezi A, Haghani I, Yazdanparast SA, Hedayati MT, Mousavi B, et al. Environmental study of azole-resistant Aspergillus fumigatus with TR34/L98H mutations in the cyp51A gene in Iran. Mycoses. 2013;56(6):659–63.

    Article  CAS  PubMed  Google Scholar 

  15. Howard SJ. Multi-resistant aspergillosis due to cryptic species. Mycopathologia. 2014;178(5–6):435–9.

    Article  CAS  PubMed  Google Scholar 

  16. Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol. 2007;59:129–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Szigeti G, Kocsubé S, Dóczi I, Bereczki L, Vágvölgyi C, Varga J. Molecular identification and antifungal susceptibilities of black Aspergillus isolates from otomycosis cases in Hungary. Mycopathologia. 2012;174(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zarei F, Mirhendi H, Motamedi M, Ahmadi B, Nouripour-Sisakht S, Zarrinfar H, et al. Black Aspergillus species isolated from clinical and environmental samples in Iran. J Med Microbiol. 2015;. doi:10.1099/jmm.0.000166.

    PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute. Reference method for broth dilution antimicrobial susceptibility testing of filamentous fungi—Second Edition: Approved Standard M38–A2. Wayne: CLSI; 2008.

    Google Scholar 

  20. Morio F, Aubin GG, Danner-Boucher I, Haloun A, Sacchetto E, Garcia-Hermoso D, et al. High prevalence of triazole resistance in Aspergillus fumigatus, especially mediated by TR/L98H, in a French cohort of patients with cystic fibrosis. J Antimicrob Chemother. 2012;67(8):1870–3.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Stensvold CR, Perlin DS, Arendrup MC. Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. J Antimicrob Chemother. 2013;68(7):1497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat. 2009;12(6):141–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a grant from the School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran (no. 1106) which we gratefully acknowledge. We are grateful to Iman Haghani for excellent technical assistance and help with antifungal susceptibility testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mirhendi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badali, H., Fakhim, H., Zarei, F. et al. In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri Complex. Mycopathologia 181, 235–240 (2016). https://doi.org/10.1007/s11046-015-9968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-015-9968-0

Keywords

Navigation