Skip to main content
Log in

An alternative approach to preserve naturalness with non-uniform illumination estimation for images enhancement using normalized \(L_2\)-Norm based on Retinex

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In recent works, the illumination estimation based on Retinex is utilized to enhance the image details. However, to enhance the image using illumination estimation without affecting the naturalness with non-uniform illumination is very difficult. The usual algorithms used for illumination estimation failed to include these constraints such as sharp edges on illumination boundaries, spatial smoothness, and the limited range of illumination while preserving the naturalness. In this paper, an illumination estimation algorithm using normalized \(L_2\)-Norm with the joint edge-preservation filter is proposed. The proposed algorithm efficiently estimates illumination and fulfils all the above-mentioned constraints. The normalized \(L_2\)-Norm is used to approximate the illumination to overcome the block effect in patch-wise illumination. Then, the overall structure is refined by using the joint edge-preservation filter. Experimental results show the quality of the smoothness of illumination beyond the edges and ensure the range of the estimated illumination in comparison with the other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, A., Gelfand, N., Dolson, J., & Levoy, M. (2009). Gaussian KD-trees for fast high-dimensional filtering. ACM Transactions on Graphics, 28(3), 21–32.

    Article  Google Scholar 

  • Arici, T., Dikbas, S., & Altunbasak, Y. A. (2009). Histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18(9), 1921–1935.

    Article  MathSciNet  MATH  Google Scholar 

  • Arigela, S., & Asari, V. K. (2011). Adaptive and nonlinear techniques for visibility improvement of hazy images. In Proceedings of the 7th international conference on advances in visual computing (Vol. 2, pp. 75–84).

  • Barron, J. T., & Malik, J. (2015). Shape illumination and reflectance from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1670–1687.

    Article  Google Scholar 

  • Beigpour, S., & Joost, V. D. W. (2011). Object recoloring based on intrinsic image estimation. in Proceeding of international conference on computer vision (pp. 327–334).

  • Chen, S., & Beghdadi, A. (2009). Natural rendering of color image based on Retinex. In Proceeding on IEEE international conference on image processing, Cairo, Egypt (pp. 1813–1816).

  • Chen, S., & Beghdadi, A. (2010). Natural enhancement of color image. EURASIP Journal of Image and Video Processing, 2, 1–9.

    Article  Google Scholar 

  • Chen, S. D., & Ramli, R. (2003a). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–309.

    Article  Google Scholar 

  • Chen, S. D., & Ramli, R. (2003b). Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4), 1310–1319.

    Article  Google Scholar 

  • Coltuc, D., Bolon, P., & Chassery, J. (2006). Exact histogram specification. IEEE Transactions on Image Processing, 15(5), 1143–1152.

    Article  Google Scholar 

  • Crow, P. (1984). Summed-area tables for texture mapping. ACM SIGGRAPH Computer Graphics, 18(3), 207–212.

    Article  Google Scholar 

  • Deng, G. (2011). A generalized un sharp masking algorithm. IEEE Transactions on Image Processing, 20(5), 1249–1261.

    Article  MathSciNet  MATH  Google Scholar 

  • Elad, M. (2005). Retinex by two bilateral filters, scale space and PDE methods in computer vision. Lecture notes in computer science (pp. 217–229). Berlin: Springer.

    Google Scholar 

  • Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X. P., & Ding, X. (2015). A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Transaction on Image Processing, 24(12), 4965–4977.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, X., Zeng, D., Huang, Y., Zhang, X. P., & Ding, X. (2016). A weighted variational model for simultaneous reflectance and illumination estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2782–2790).

  • Gao, Y., Hu, H. M., Li, B., & Guo, Q. (2018). Naturalness preserved nonuniform illumination estimation for image enhancement based on Retinex. IEEE Transactions on Multimedia, 20(2), 335–344.

    Article  Google Scholar 

  • Gastal, E. S. L., & Oliveira, M. M. (2011). Domain transform for edge-aware image and video processing. ACM Transactions on Graphics, 30(4), 69–79.

    Article  Google Scholar 

  • Gastal, E. S. L., & Oliveira, M. M. (2012). Adaptive manifolds for real-time high dimensional filtering. ACM Transactions on Graphics, 31(4), 33–45.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2009). Digital image processing (3rd ed.). Upper Saddle River: Pearson Prentice-Hall.

    Google Scholar 

  • Guarnieri, G., Marsi, S., & Ramponi, G. (2011). High dynamic range image display with halo and clipping prevention. IEEE Transactions on Image Processing, 20(5), 1351–1362.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, X., Yu, L., & Ling, H. (2017). LIME low-light image enhancement via illumination map estimation. IEEE Transaction on Image Processing, 26(2), 982–993.

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, B., & Agarwal, T. K. (2017a). Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement. Computers & Electrical Engineering, 62, 360–374.

    Article  Google Scholar 

  • Gupta, B., & Agarwal, T. K. (2017b). New contrast enhancement approach for dark images with non-uniform illumination. Computers & Electrical Engineering, 70, 616–630.

    Article  Google Scholar 

  • Gupta, B., & Tiwari, M. (2018). Improving source camera identification performance using DCT based image frequency components dependent sensor pattern noise extraction method. Digital Investigation, 24, 121–127.

    Article  Google Scholar 

  • Ibrahim, H., & Kong, N. (2007). Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(4), 1752–1758.

    Article  Google Scholar 

  • Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997a). Properties and performance of a center/surround Retinex. IEEE Transactions on Image Processing, 6(3), 451–462.

    Article  Google Scholar 

  • Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997b). A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transaction on Image Processing, 6(7), 965–976.

    Article  Google Scholar 

  • Jung, C., Sun, T., & L, Jiao. (2013). Eye detection under varying illumination using the Retinex theory. Neurocomputing, 113, 130–137.

    Article  Google Scholar 

  • Kim, M., & Chung, G. C. (2008). Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Transaction on Consumer Electronics, 54(3), 1389–1397.

    Article  Google Scholar 

  • Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.

    Article  MathSciNet  Google Scholar 

  • Kimmel, R., Elad, M., Shaked, D., Keshet, R., & Sobel, I. (2003). A variational framework for Retinex. Internatioal Journal of Computer Vision, 52(1), 7–23.

    Article  MATH  Google Scholar 

  • Land, E. W., & McMann, J. J. (1971). Lightness and retinex theory. Journal of the Optical Society of America A, 61(1), 1–11.

    Article  Google Scholar 

  • Li, B., Wang, S., & Geng, Y. (2011). Image enhancement based on Retinex and lightness decomposition. In IEEE international conference on image processing, Blussels, Belgium (pp. 3417–3420).

  • Meylan, L. (2006). Tone mapping for high dynamic range images. Ph.D. thesis, EPFL.

  • Meylan, L., & Ssstrunk, S. (2006). High dynamic range image rendering with a Retinex-based adaptive filter. IEEE Transactions on Instrumentation and Measurement, 15(9), 2820–2830.

    Google Scholar 

  • Mohan, S., & Ravishankar, M. (2012). Modified contrast limited adaptive histogram equalization based on local contrast enhancement for mammogram images. In International conference on advances in information technology and mobile communication (pp. 397–403). Springer.

  • Mohan, S., & Ravishankar, M. (2013). Optimized histogram based contrast limited enhancement for mammogram images. Short Paper, ACEEE International Journal on Information Technology, 3(1), 1–6.

    Google Scholar 

  • Ng, M. K., & Wang, W. (2011). A total variation model for Retinex. SIAM Journal Imaging Science, 4(1), 345–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Peak Signal-to-Noise Ratio as an Image Quality Metric. (2013). http://www.ni.com/white-paper/13306/en/. Accessed 30 Nov 2018.

  • Poddar, S., Tewary, S., & Sharma, D. (2013). Non-parametric modified histogram equalization for contrast enhancement. IET Image Processing, 7(7), 641–652.

    Article  Google Scholar 

  • Polesel, A., Ramponi, G., & Mathews, V. J. (2000). Image enhancement via adaptive un sharp masking. IEEE Transactions on Image Processing, 9(3), 505–510.

    Article  Google Scholar 

  • Rahman, Z., Jobson, D. J., & Woodell, G. A. (1996). Multi-scale Retinex for color image enhancement. In Proceedings of 3rd IEEE international conference on image processing (Vol. 3, pp. 1003–1006).

  • Rahman, Z., Jobson, D. J., & Woodell, G. A. (2004). Retinex processing for automatic image enhancement. Journal of Electronics Imaging, 13(1), 100–110.

    Article  Google Scholar 

  • Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing, 38(1), 35–44.

    Article  Google Scholar 

  • Rivera, A. R., Ryu, B., & Chae, O. (2012). Content-aware dark image enhancement through channel division. IEEE Transactions on Image Processing, 21(9), 3967–3980.

    Article  MathSciNet  MATH  Google Scholar 

  • Sawant, H. K., & Deore, M. A. (2010). Comprehensive review of image enhancement techniques. International Journal Computational Technology Electronics, 1(2), 39–44.

    Google Scholar 

  • Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.

    Article  Google Scholar 

  • Shen, C., & Hwang, W. (2009). Color image enhancement using Retinex with robust envelope. In IEEE international conference on image processing, Cairo, Egypt (pp. 3141–3144).

  • Shen, F., Zhao, Y., Jiang, X., & Suwa, M. (2009). Recovering high dynamic range by multi-exposure Retinex. Journal of Visual Communication and Image Representation, 20(8), 521–531.

    Article  Google Scholar 

  • Shin, Y. H., Jeong, S., & Lee, S. (2015). Efficient naturalness restoration for non-uniform illumination images. IET Image Processing, 9(8), 662–671.

    Article  Google Scholar 

  • Sim, K. S., Tso, C. P., & Tan, Y. (2007). Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognization Letters, 28(10), 1209–1221.

    Article  Google Scholar 

  • Thomas, G., Flores Tapia, D., & Pistorius, S. (2011). Histogram specification: A fast and flexible method to process digital images. IEEE Transactions on Instrumentation Measurement, 60(5), 1565–578.

    Article  Google Scholar 

  • Tiwari, M., & Gupta, B. (2016). Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering. Electrical, Electronics and Computer Science (SCEECS), 5, 1–4.

    Google Scholar 

  • Tiwari, M., Gupta, B., & Shrivastava, M. (2014). High speed quantile based histogram equalization for brightness preservation and contrast enhancement. IET Image Processing, 9(1), 80–89.

    Article  Google Scholar 

  • Toet, A. (1990). Adaptive multi-scale contrast enhancement through non linear pyramid recombination. Pattern Recognition Letters, 11(11), 735–742.

    Article  MATH  Google Scholar 

  • Tsai, C. Y. (2012). A fast dynamic range compression with local contrast preservation algorithm and its application to real-time video enhancement. IEEE Transaction on Multimedia, 14(4), 1140–1152.

    Article  MathSciNet  Google Scholar 

  • Wang, S., Zheng, J., Hu, H., & Li, B. (2013). Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 22(9), 3538–3548.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wong, C. Y., Jiang, G., Rahman, M. A., Liu, S., Lin, S. C., Kwok, N., et al. (2016). Histogram equalization and optimal profile compression based approach for colour image enhancement. Journal of Visual Communication and Image Representation, 1(38), 802–813.

    Article  Google Scholar 

  • Yan, X., Shen, J., He, Y., & Mao, X. (2010). Re-texturing by intrinsic video. In International conference on digital image computing: Techniques and applications (pp. 486–491).

  • Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In P. S. Heckbert (Ed.), Chapter VIII, Graphics gems IV (pp. 474–485). Cambridge, MA: Academic Press.

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to forward our thanks to anonymous referees, who spend their precious time in reviewing this paper. We would like to acknowledge their contribution due to which there is a significant improvement in the paper. Also, we are grateful to the editor associated with this paper for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.K., Gupta, B. & Tiwari, M. An alternative approach to preserve naturalness with non-uniform illumination estimation for images enhancement using normalized \(L_2\)-Norm based on Retinex. Multidim Syst Sign Process 31, 1091–1112 (2020). https://doi.org/10.1007/s11045-020-00700-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00700-9

Keywords

Navigation