Skip to main content
Log in

Stability of one-dimensioned spatially interconnected systems

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This article is dedicated to the stability of one-dimensioned spatially interconnected systems. More precisely, it focuses on systems which results of the interconnection of a possibly large number of cells (continuous subsystems). This note is restricted to the case where cells are just distributed along a line. The global system can then be seen as a mixed continuous–discrete 2D Roesser system but with implicit discrete dynamics along the space dimension. Recent results on the stability of 2D Roesser models are exploited and adapted to derive a sufficient condition for such a system to be stable. The condition seems to be close to necessity if not necessary. It is tractable since it is expressed in terms of linear matrix inequalities. The novelty clearly lies in the reduction of the conservatism of the proposed analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This commonly used term is actually not appropriate in the present article since this transform will be applied on a space dimension and the term “discrete-space Fourier transform” is probably more appropriate and it is used in the remainder of the article.

References

  • Athalye, C., Pal, D., & Pillai, H. (2016). \(l^{\infty }\)-stability analysis of discrete autonomous systems described by Laurent polynomial matrix operators. Systems and Control Letters, 93, 13–20.

    MathSciNet  MATH  Google Scholar 

  • Augusta, P., & Hurak, Z. (2013). Distributed stabilisation of spatially invariant systems: Positive polynomial approach. Multidimensional Systems and Signal Processing, 24, 3–21.

    MathSciNet  MATH  Google Scholar 

  • Bachelier, O., & Mehdi, D. (2015). On some relaxations commonly used in the study of linear systems. Kybernetika, 51(5), 830–855.

    MathSciNet  MATH  Google Scholar 

  • Bachelier, O., Paszke, W., Yeganefar, N., & Mehdi, D. (2013). Stability of 2D Roesser models: Towards a necessary and sufficient LMI condition. In Proceedings of the 8th international workshop on multidimensional systems (nDS’13), Erlangen, Germany.

  • Bachelier, O., Paszke, W., Yeganefar, N., & Mehdi, D. (2018). Comments on “On stabilization of 2D Roesser models”. IEEE Transactions on Automatic Control, 63(8), 2745–2749.

    MathSciNet  MATH  Google Scholar 

  • Bachelier, O., Paszke, W., Yeganefar, N., Mehdi, D., & Cherifi, A. (2014). Towards LMI necessary and sufficient stability conditions for 2D Roesser models. Research Report, available upon request at http://www.lias-lab.fr/perso/olivierbachelier/.

  • Bachelier, O., Paszke, W., Yeganefar, N., Mehdi, D., & Cherifi, A. (2016). LMI stability conditions for \(2\)D Roesser models. IEEE Transactions on Automatic Control, 61(3), 766–770.

    MathSciNet  MATH  Google Scholar 

  • Bachelier, O., Yeganefar, N., Mehdi, D., & Paszke, W. (2017). On stabilization of 2D Roesser models. IEEE Transactions on Automatic Control, 62(5), 2505–2511.

    MathSciNet  MATH  Google Scholar 

  • Bamieh, B., Paganini, F., & Dalheh, M. A. (2002). Distributed control of spatially invariant systems. IEEE Transactions on Automatic Control, 47(7), 1091–1107.

    MathSciNet  MATH  Google Scholar 

  • Bliman, P. A. (2004). An existence result for polynomial solutions of parameter dependent LMI. Systems and Control Letters, 52(3–4), 165–169.

    MathSciNet  MATH  Google Scholar 

  • Bose, N. K. (1982). Applied multidimensional system theory. New-York: Van Nostrand Reinhold Comp.

    MATH  Google Scholar 

  • Boyd, S., Ghaoui, L. El, Féron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Volume 15 of SIAM Studies in Applied Mathematics, USA.

  • Chandra, R. S., & D’Andrea, R. (2006). A scaled small gain theorem with applications to spatially interconnected systems. IEEE Transactions on Automatic Control, 51(3), 465–469.

    MathSciNet  MATH  Google Scholar 

  • Chandra, R. S., Langbort, C., & D’Andrea, R. (2009). Distributed control design with robustness to small time delays. Systems and Control Letters, 58, 296–303.

    MathSciNet  MATH  Google Scholar 

  • Chesi, G., & Middleton, R. (2014). Necessary and sufficient LMI conditions for stability and performance analysis of 2D mixed continuous–discrete-time systems. IEEE Transactions on Automatic Control, 59(4), 996–1007.

    MathSciNet  MATH  Google Scholar 

  • Chichka, D. F., & Speyer, J. L. (1998). Solar-powered, formation-enhanced aerial vehicle system for sustained endurance. In Proceedings of American control conference (ACC), Philadelphia, USA.

  • Cichy, B., Augusta, P., Rogers, E., Gałkowski, K., & Hurak, Z. (2010). Robust control of distributed parameter mechanical systems using a multidimensional systems approach. Bulletin of The Polish Academy of Sciences - Technical Sciences, 58(1), 67–75.

    Google Scholar 

  • Curtain, R., & Zwart, H. J. (1995). An introduction to infinite-dimensional linear systems theory. New York: Springer.

    MATH  Google Scholar 

  • Dai, L. (1989). Singular control systems. Berlin: Springer.

    MATH  Google Scholar 

  • D’Andrea, R., & Dullerud, G. E. (2003). Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, 48(9), 1478–1495.

    MathSciNet  MATH  Google Scholar 

  • Dullerud, G. E., & D’Andrea, R. (2004). Distributed control of heterogeneous systems. IEEE Transactions on Automatic Control, 49(12), 2113–2128.

    MathSciNet  MATH  Google Scholar 

  • Feintuch, A., & Francis, B. (2012). Infinite chain of kineamtic points. Automatica, 48, 901–908.

    MATH  Google Scholar 

  • Feng, H., Xu, H., Xu, S., & Chen, W. (2018). Distributed control design for spatially interconnected Markovian jump systems with time varying delays. Asian Journal of Control, 20(3), 1125–1134.

    MathSciNet  MATH  Google Scholar 

  • Gahinet, P., Nemirovski, A., Laub, A. J., & Chilali, M. (1995). LMI control toolbox. Natick: The MathWorks Inc.

    Google Scholar 

  • Gałkowski, K., & Wood, J. (2001). Multidimensional signals, circuits and systems. London: Taylor and Francis.

    Google Scholar 

  • Gorinevsky, D., & Stein, G. (2003). Structured uncertainty analysis of robust stability for multidimensional array systems. IEEE Transactions on Automatic Control, 48(9), 1557–1568.

    MathSciNet  MATH  Google Scholar 

  • Gutman, S., & Jury, E. I. (1981). A general theory for matrix root-clustering in subregions of the complex plane. IEEE Transactions on Automatic Control, 26(4), 853–863.

    MathSciNet  MATH  Google Scholar 

  • Hecker, S., & Varga, A. (2004). Generalized LFT-based representation of parametric models. European Journal of Control, 10(4), 326–337.

    MathSciNet  MATH  Google Scholar 

  • Hill, R. D. (1977). Eigenvalue location using certain matrix functions and geometric curves. Linear Algebra and Its Applications, 16, 83–91.

    MathSciNet  MATH  Google Scholar 

  • Iwasaki, T., & Hara, S. (2005). Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 50(1), 41–59.

    MathSciNet  MATH  Google Scholar 

  • Langbort, C., Chandra, R. S., & D’Andrea, R. (2004). Distributed control of systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, 49(9), 1502–1519.

    MathSciNet  MATH  Google Scholar 

  • Langbort, C., & D’Andrea, R. (2005). Distributed control of spatially reversible interconnected systems with boundary conditions. SIAM Journal of Control and Optimization, 44(1), 1–28.

    MathSciNet  MATH  Google Scholar 

  • Melzer, S. M., & Kuo, B. C. (1971). Optimal regulation of systems described by a countably infinite number of objects. Automatica, 7, 359–366.

    MathSciNet  MATH  Google Scholar 

  • Mosfegh, A. (1993). Discrete state-space modeling for linear nth-order constant coefficient distributed-parameter systems. Dynamics and Control, 3, 71–90.

    MathSciNet  Google Scholar 

  • Napp, D., Rapisarda, P., & Rocha, P. (2011). Time relevant stability of 2D systems. Automatica, 47(11), 2373–2382.

    MathSciNet  MATH  Google Scholar 

  • Paszke, W. (2005). Analysis and synthesis of multidimensional system classes using linear matrix inequality methods. Ph.D. thesis report, University of Zielona Góra, Zielona Góra, Poland.

  • Peaucelle, D., Arzelier, D., Henrion, D., & Gouaisbault, F. (2007). Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation. Automatica, 43, 796–804.

    MathSciNet  MATH  Google Scholar 

  • Rao, R. (2008). Signals and systems. New Delhi: Tata McGraw Hill Publishing Company Limited.

    Google Scholar 

  • Recht, B., & D’Andrea, R. (2004). Distributed control of systems over discrete groups. IEEE Transactions on Automatic Control, 49(9), 1446–1452.

    MathSciNet  MATH  Google Scholar 

  • Rogers, E., Gałkowski, K., & Owens, D. H. (2007). control systems theory and applications for linear repetitive processes (Vol. 349), Lecture Notes in Control and Information Sciences Berlin, Germany: Springer-Verlag.

  • Sari, B., Bachelier, O., & Mehdi, D. (2011). Robust S-regularity of matrix pencils applied to the analysis of descriptor models. Linear Algebra and its Applications, 435(5), 923–942.

    MathSciNet  MATH  Google Scholar 

  • Scherer, C. W. (1997). A full block S-procedure with applications. In Proceedings of 36th conference on decision control, San Diego, USA.

  • Scherer, C. W. (2001). LPV control and full block multipliers. Automatica, 37, 361–375.

    MathSciNet  MATH  Google Scholar 

  • Scherer, C. W. (2016). Lossless H\(_{\infty }\)-synthesis for 2D systems. Systems and Control Letters, 95, 35–45.

    MathSciNet  MATH  Google Scholar 

  • Sulikowski, B., & Gałkowski, K. (2018). Distributed control design for spatially interconnected Markovian jump systems with time varying delays. International Journal of Control, 20(3), 1125–1134.

    MathSciNet  Google Scholar 

  • Wood, J., Sule, V. R., & Rogers, E. (2005). Causal and stable imput/output structures on multidimensional systems. SIAM Journal on Control and Optimization, 43(4), 1493–1520.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bachelier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the MIRES Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachelier, O., Cluzeau, T., Silva Alvarez, F.J. et al. Stability of one-dimensioned spatially interconnected systems. Multidim Syst Sign Process 31, 1005–1028 (2020). https://doi.org/10.1007/s11045-019-00695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00695-y

Keywords

Navigation