Skip to main content
Log in

Joint-block-sparsity for efficient 2-D DOA estimation with multiple separable observations

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In sparsity-based optimization problems, one of the major issue is computational complexity, especially when the unknown signal is represented in multi-dimensions such as in the problem of 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation. In order to cope with this issue, this paper introduces a new sparsity structure that can be used to model the optimization problem in case of multiple data snapshots and multiple separable observations where the dictionary can be decomposed into two parts: azimuth and elevation dictionaries. The proposed sparsity structure is called joint-block-sparsity which enforces the sparsity in multiple dimensions, namely azimuth, elevation and data snapshots. In order to model the joint-block-sparsity in the optimization problem, triple mixed norms are used. In the simulations, the proposed method is compared with both sparsity-based techniques and subspace-based methods as well as the Cramer–Rao lower bound. It is shown that the proposed method effectively solves the 2-D DOA estimation problem with significantly low complexity and sufficient accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Caliciotti, A., Fasano, G., & Roma, M. (2018). Preconditioned nonlinear conjugate gradient methods based on a modified secant equation. Applied Mathematics and Computation, 318, 196–214. (Recent Trends in Numerical Computations: Theory and Algorithms) .

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21–30.

    Article  Google Scholar 

  • Cotter, S., Rao, B., Engan, K., & Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53, 2477–2488.

    Article  MathSciNet  MATH  Google Scholar 

  • Dassios, I. K. (2015). Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations. Circuits, Systems, and Signal Processing, 34, 1769–1797.

    Article  MathSciNet  MATH  Google Scholar 

  • Dassios, I., Fountoulakis, K., & Gondzio, J. (2015). A preconditioner for a primal–dual Newton conjugate gradient method for compressed sensing problems. SIAM Journal on Scientific Computing, 37(6), A2783–A2812.

    Article  MathSciNet  MATH  Google Scholar 

  • Elbir, A. M., & Tuncer, T. E. (2016). 2D-DOA and mutual coupling coefficient estimation for arbitrary array structures with single and multiple snapshots. Digital Signal Processing, 54, 75–86.

    Article  Google Scholar 

  • Filik, T., & Tuncer, T. E. (2010). A fast and automatically paired 2-D direction-of-arrival estimation with and without estimating the mutual coupling coefficients. Radio Science, 45(3), RS3009.

    Article  Google Scholar 

  • Friedlander, B., & Weiss, A. (1991). Direction finding in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 39, 273–284.

    Article  Google Scholar 

  • Hyder, M., & Mahata, K. (2010). Direction-of-arrival estimation using a mixed \(l_{2,0}\)-norm approximation. IEEE Transactions on Signal Processing, 58, 4646–4655.

    Article  MathSciNet  MATH  Google Scholar 

  • Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13, 67–94.

    Article  Google Scholar 

  • Malioutov, D., Cetin, M., & Willsky, A. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53, 3010–3022.

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, B. D., & Kreutz-Delgado, K. (1999). An affine scaling methodology for best basis selection. IEEE Transactions on Signal Processing, 47, 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 37, 984–995.

    Article  MATH  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34, 276–280.

    Article  Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 1783–1795.

    Article  MATH  Google Scholar 

  • Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33, 387–392.

    Article  MathSciNet  Google Scholar 

  • Wu, Q., Sun, F., Lan, P., Ding, G., & Zhang, X. (2016). Two-dimensional direction-of-arrival estimation for co-prime planar arrays: A partial spectral search approach. IEEE Sensors Journal, 16, 5660–5670.

    Article  Google Scholar 

  • Yang, Z., Li, J., Stoica, P., & Xie, L. (2017). “Chapter 11—Sparse methods for direction-of-arrival estimation,” Volume 7 of Academic Press Library in Signal Processing. Amsterdam: Elsevier.

  • Yang, Z., & Xie, L. (2015). On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Transactions on Signal Processing, 63, 3139–3153.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, G., Shi, G., Shen, F., Luo, X., & Niu, Y. (2015). A sparse representation-based DOA estimation algorithm with separable observation model. IEEE Antennas and Wireless Propagation Letters, 14, 1586–1589.

    Article  Google Scholar 

  • Ziskind, I., & Wax, M. (1988). Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Acoustics, Speech and Signal Processing, 36, 1553–1560.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet M. Elbir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Derivation of (18)

Using \(\textit{factored representation}\) as in Cotter et al. (2005) and Rao and Kreutz-Delgado (1999), the gradient of the cost function (18), \(J(\{\mathbf{P}_k\}_{k=1}^K)\), is given as follows

$$\begin{aligned} \nabla _{P}\{J(\{\mathbf{P}_k\}_{k=1}^K)\}&= \nabla _{{P}} \left\{ || \tilde{\mathbf{P}}||_{2,2,1} \right\} \nonumber \\&\quad +\,\frac{\gamma _{1}}{2} \left( 2{\mathbf{A}}_{\theta }^H{\mathbf{A}}_{\theta }{} \mathbf{P} -2{\mathbf{A}}_{\theta }^H \tilde{\mathbf{Y}}^{\text {SV}}\right) +\frac{\gamma _{2}}{2} \left( 2 \mathbf{P} - 2 \bar{\mathbf{H}}_{\phi }\right) \end{aligned}$$
(22)

where \(\bar{\mathbf{H}}_{\phi } = [\mathbf{Q}_1^H\mathbf{A}_{\phi },\ldots ,\mathbf{Q}_K^H\mathbf{A}_{\phi }]\). The gradient of the first term in (22) is \(\nabla _{{P}} \{ || \tilde{\mathbf{P}}||_{2,2,1}\} = {\varPi }(\mathbf{P})\mathbf{P}\) (Cotter et al. 2005) where \({\varPi }(\mathbf{P}) \in \mathbb {C}^{N_{\theta } \times N_{\theta }}\) can be computed as

$$\begin{aligned} \varPi (\mathbf{P}) = l \cdot \text {diag}(\tilde{\mathbf{p}}^{l-2} ) \end{aligned}$$
(23)

where \(l\le 1\) (Cotter et al. 2005; Rao and Kreutz-Delgado 1999), \(\tilde{\mathbf{p}} \in \mathbb {C}^{N_{\theta }}\) and

$$\begin{aligned} \tilde{p}_{n_{\theta }}= \left( \sum _{k = 1}^{K}\sum _{n = 1}^{N} |[\mathbf{P}]_{n_{\theta },N(k-1)+n }|^2\right) ^{1/2}. \end{aligned}$$
(24)

By equating the gradient in (22) to zero we get

$$\begin{aligned}&{\varPi }(\mathbf{P}) \mathbf{P} + \gamma _{1} ({\mathbf{A}}_{\theta }^H{\mathbf{A}}_{\theta }{} \mathbf{P} - \mathbf{A}_{\theta }^H \tilde{\mathbf{Y}}^{\text {SV}}) + \gamma _{2}(\mathbf{P} - \bar{\mathbf{H}}_{\phi }) = 0 \nonumber \\&\quad \big ( {\varPi }(\mathbf{P})+\gamma _{1} {\mathbf{A}}_{\theta }^H{\mathbf{A}}_{\theta } + \gamma _{2} \mathbf{I}\big ) \mathbf{P} = {\mathbf{A}}_{\theta }^H \tilde{\mathbf{Y}}^{\text {SV}} + \gamma _{2}\bar{\mathbf{H}}_{\phi }. \end{aligned}$$
(25)

Then we have the solution for \(\mathbf{P}\) as

$$\begin{aligned} \mathbf{P} = \big ( {\varPi }(\mathbf{P})+\gamma _{1} {\mathbf{A}}_{\theta }^H{\mathbf{A}}_{\theta } + \gamma _{2} \mathbf{I}\big )^{\dagger } \big ( {\mathbf{A}}_{\theta }^H \tilde{\mathbf{Y}}^{\text {SV}} + \gamma _{2}\bar{\mathbf{H}}_{\phi }\big ). \end{aligned}$$
(26)

1.2 Derivation of (19)

In a similar way as in Appendix 7.1 (Cotter et al. 2005; Rao and Kreutz-Delgado 1999), we have the gradient of the cost function in (19), \(J(\{\mathbf{Q}_k\}_{k=1}^K)\), as

$$\begin{aligned} \nabla _{Q}\{ J(\{\mathbf{Q}_k\}_{k=1}^K) \}=&\lambda {\varPi }(\mathbf{Q})\mathbf{Q} +\frac{\gamma _{2}}{2} \left( 2 {\mathbf{A}}_{\phi }{\mathbf{A}}_{\phi }^H \mathbf{Q} - 2 \tilde{\mathbf{H}}_{\phi } \right) \end{aligned}$$

where \(\tilde{\mathbf{H}}_{\phi } = [\mathbf{A}_{\phi }{} \mathbf{P}_1^T,\ldots ,\mathbf{A}_{\phi }{} \mathbf{P}_K^T]\in \mathbb {C}^{N_{\phi }\times N_{\theta }K }\), \({\varPi }(\mathbf{Q}) = l \cdot \text {diag}(\tilde{\mathbf{q}}^{l-2} ) \) for \(\tilde{\mathbf{q}} \in \mathbb {C}^{N_{\phi }}\) and

$$\begin{aligned} \tilde{q}_{n_{\phi }}= \left( \sum _{k = 1}^{K}\sum _{n = 1}^{N} |[\mathbf{Q}]_{n_{\phi },N(k-1)+n }|^2\right) ^{1/2}. \end{aligned}$$
(27)

By equating the gradient to zero we get

$$\begin{aligned}&\lambda {\varPi }(\mathbf{Q})\mathbf{Q} + \gamma _{2} \big ( {\mathbf{A}}_{\phi }{\mathbf{A}}_{\phi }^H \mathbf{Q} - \tilde{\mathbf{H}}_{\phi } \big ) = 0 \nonumber \\&\big (\lambda {\varPi }(\mathbf{Q}) + \gamma _{2} {\mathbf{A}}_{\phi }{\mathbf{A}}_{\phi }^H \big )\mathbf{Q} = \tilde{\mathbf{H}}_{\phi }. \end{aligned}$$
(28)

Then we have the solution for \(\mathbf{Q}\) as

$$\begin{aligned} \mathbf{Q} = \big (\lambda {\varPi }(\mathbf{Q}) + \gamma _{2} {\mathbf{A}}_{\phi }{\mathbf{A}}_{\phi }^H \big )^{\dagger }\tilde{\mathbf{H}}_{\phi }. \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbir, A.M. Joint-block-sparsity for efficient 2-D DOA estimation with multiple separable observations. Multidim Syst Sign Process 30, 1659–1669 (2019). https://doi.org/10.1007/s11045-018-0623-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0623-z

Keywords

Navigation