Skip to main content
Log in

Exploring chaotic attractors in nonlinear dynamical system under fractal theory

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new method to exploit chaotic attractors of nonlinear dynamics. The method decreases both the correlation and the noise of samples while preserves chaotic characteristics of samples in real time applications. The fractal prediction method is used to compressive sensing method in order to concentrate the sparse data on a trajectory. The proposed method can be applied to chaotic noise reduction, signal compression, and object’s movement synthesis in video. The experimental results indicate that the proposed method outperforms other state-of-the-art methods. Moreover, the results demonstrate that the chaotic extraction method is most effective to represent a chaotic dynamics of nonlinear time series for signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://users.ece.gatech.edu/sasif/homotopy.

  2. http://www.lx.it.pt/~mtf/SpaRSA.

  3. http://yall1.blogs.rice.edu.

References

  • Abdechiri, M., Faez, K., Amindavar, H., & Bilotta, E. (2017a). The chaotic dynamics of high-dimensional systems. Nonlinear Dynamics, 87(4), 2597–2610.

    Article  MathSciNet  Google Scholar 

  • Abdechiri, M., Faez, K., Amindavar, H., & Bilotta, E. (2017b). Chaotic target representation for robust object tracking. Signal Processing: Image Communication, 54, 23–35.

    Google Scholar 

  • Abdechiri, M., Faez, K., & Amindavar, H. (2017c). Visual object tracking with online weighted chaotic multiple instance learning. Neurocomputing, 247, 16–30.

    Article  Google Scholar 

  • Abdechiri, M., Faez, K., & Bahrami, H. (2010). Neural network learning based on chaotic imperialist competitive algorithm. In 2010 2nd international workshop on Intelligent systems and applications (ISA) (pp. 1–5). IEEE.

  • Alikhani Koupaei, J., & Hosseini, S. M. M. (2015). A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations. Chaos, Solitons and Fractals, 81, 233–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Alikhani Koupaei, J., Hosseini, S. M. M., & Ghaini, F. M. (2016). A new optimization algorithm based on chaotic maps and golden section search method. Engineering Applications of Artificial Intelligence, 50, 201–214.

    Article  Google Scholar 

  • Asif, M. S., & Romberg, J. (2014). Sparse recovery of streaming signals using-homotopy. IEEE Transactions on Signal Processing, 62(16), 4209–4223.

    Article  MathSciNet  MATH  Google Scholar 

  • Bahrami, H., Faez, K., & Abdechiri, M. (2010). Imperialist competitive algorithm using chaos theory for optimization (CICA). In 2010 12th international conference on Computer modelling and simulation (UKSim) (pp. 98–103). IEEE.

  • Basharat, A., & Shah, M. (2009). Time series prediction by chaotic modeling of nonlinear dynamical systems. In 2009 IEEE 12th international conference on computer vision (pp. 1941–1948). IEEE.

  • Chen, D., Liu, C., Wu, C., Liu, Y., Ma, X., & You, Y. (2012a). A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits, Systems, and Signal Processing, 31(5), 1599–1613.

    Article  MathSciNet  Google Scholar 

  • Chen, D. Y., Shi, L., Chen, H. T., & Ma, X. Y. (2012b). Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dynamics, 67(3), 1745–1752.

    Article  MathSciNet  Google Scholar 

  • Chen, D. Y., Wu, C., Liu, C. F., Ma, X. Y., You, Y. J., & Zhang, R. F. (2012c). Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dynamics, 67(2), 1481–1504.

    Article  MATH  Google Scholar 

  • Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  • Du, H., & Smith, L. A. (2014). Pseudo-orbit data assimilation. Part I: The perfect model scenario. Journal of the Atmospheric Sciences, 71(2), 469–482.

    Article  Google Scholar 

  • Farmer, M. E. (2007). A chaos theoretic analysis of motion and illumination in video sequences. Journal of Multimedia, 2(2), 53–64.

    Article  Google Scholar 

  • Fertig, E. J., Harlim, J., & Hunt, B. R. (2007). A comparative study of 4D-VAR and a 4D ensemble Kalman filter: Perfect model simulations with Lorenz-96. Tellus A, 59(1), 96–100.

    Article  Google Scholar 

  • Firouznia, M., Faez, K., Amindvar, H. R., Pantano, P., & Bilotta, E. (2017). Multi-step prediction method for robust object tracking. Digital Signal Processing, 70(2017), 94–104.

    Article  Google Scholar 

  • Gan, C. B., & Lei, H. (2011). A new procedure for exploring chaotic attractors in nonlinear dynamical systems under random excitations. Acta Mechanica Sinica, 27(4), 593–601.

    Article  MathSciNet  MATH  Google Scholar 

  • Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784–1789.

    Article  Google Scholar 

  • Lawrence, N. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6, 1783–1816.

    MathSciNet  MATH  Google Scholar 

  • Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., & Lee, S. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and networks, 15(5), 443–456.

    Article  Google Scholar 

  • Sugihara, G., & Mayf, R. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344, 734–741.

  • Tillmann, A. M., & Pfetsch, M. E. (2014). The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Transactions on Information Theory, 60(2), 1248–1259.

    Article  MathSciNet  MATH  Google Scholar 

  • Tongue, B. H., & Gu, K. (1988). Interpolated cell mapping of dynamical systems. Journal of Applied Mechanics, 55(2), 461–466.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsonis, A. A., & Elsner, J. B. (1992). Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature, 358, 217–220.

  • Upadhyay, R. K., & Iyengar, S. R. (2013). Introduction to mathematical modeling and chaotic dynamics. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  • Wales, D. J. (1991). Calculating the rate of loss of information from chaotic time series by forecasting. Nature, 350, 485–488.

  • Wang, X., & Wang, M. (2008). A hyperchaos generated from Lorenz system. Physica A: Statistical Mechanics and its Applications, 387(14), 3751–3758.

    Article  MathSciNet  Google Scholar 

  • Wang, X. Y., & Wang, M. J. (2007). Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos: An Interdisciplinary. Journal of Nonlinear Science, 17(3), 033106.

    MATH  Google Scholar 

  • Wright, S. J., Nowak, R. D., & Figueiredo, M. A. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7), 2479–2493.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J., Lu, J., & Wang, J. (2009). Application of chaos and fractal models to water quality time series prediction. Environmental Modelling and Software, 24(5), 632–636.

    Article  Google Scholar 

  • Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for \(\backslash ell_1\)-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1), 250–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Yujun, N., Xingyuan, W., Mingjun, W., & Huaguang, Z. (2010). A new hyperchaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3518–3524.

    Article  Google Scholar 

  • Zhang, Y. Q., & Wang, X. Y. (2014a). A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Information Sciences, 273, 329–351.

    Article  Google Scholar 

  • Zhang, Y. Q., & Wang, X. Y. (2014b). Spatiotemporal chaos in mixed linear-nonlinear coupled logistic map lattice. Physica A: Statistical Mechanics and Its Applications, 402, 104–118.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y. Q., & Wang, X. Y. (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing, 26, 10–20.

    Article  Google Scholar 

  • Zhou, N., Zhang, A., Zheng, F., & Gong, L. (2014). Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Optics and Laser Technology, 62, 152–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Faez.

Appendix

Appendix

There have been many methods to reduce the noise of chaotic time series such as 4D variational method (4DVAR) and Pseudo-orbit Data Assimilation (PDA). The 4DVAR algorithm, the initial condition of system is found based on observations. In the algorithm minimizes mismatch between trajectory and observations as

$$\begin{aligned} C_{4DVAR}= & {} \frac{1}{2}\left( {x_{-n+1} -x_{-n+1}^b } \right) ^{T}B^{-1}\left( {x_{-n+1} -x_{-n+1}^b } \right) \\&+\,\frac{1}{2}\mathop \sum \limits _{t=-n+1}^0 [h\left( {x_t-s_t} \right] ^{T}{\Gamma }^{-1}\left[ {h\left( {x_t } \right) -s_t } \right] \end{aligned}$$

where the background or initial value is \({x_{-n+1}^{b}}\) and the covariance matrix is B. The observations in time t is \({s_{t}}\).

PDA is applied to an initial condition ensemble to identify a reference trajectory with the projected observation sequence into the state space. The method minimizes the mismatches of points, which are not trajectories of model, using the gradient descent method based on Ikeda map. The gradient descent (GD) algorithm is used to minimize the mismatch error \({e_{n}}=|F({u}_{n})-{u_{n+1}}|,n=-m+1,\ldots ,-1\) with the cost function \({C(U)=\sum {e_{n}^{2}}}\). The pseudo orbit U is obtained using the gradient-based method

$$\begin{aligned} \frac{\partial C\left( U \right) }{\partial u_n }=2\times \left\{ {{\begin{array}{ll} -\left[ {u_{n+1} -F\left( {u_n } \right) } \right] d_n F\left( {u_n } \right) &{}\quad \quad n=-m+1 \\ \left[ {u_n -F\left( {u_{n+1} } \right) } \right] -\left[ {u_{n+1} -F\left( {u_n } \right) } \right] d_n F\left( {u_n } \right) &{} -m+1<n<0 \\ u_n -F\left( {u_{n-1} } \right) &{}\quad \quad \quad \quad \quad \quad n=0 \\ \end{array} }} \right. \end{aligned}$$

where \(d_n F\left( {u_n } \right) \) is the Jacobian matrix of F. The pseudo orbit U is updated as

$$\begin{aligned} U=U+\frac{\partial C\left( U \right) }{\partial u_n } \end{aligned}$$

to generate a trajectory in the state space. To select ensemble members using a likelihood function, the candidate trajectories can be created by sampling a local state around the reference trajectory. A reference trajectory can be generated based on middle component \(y_{-m/2} \) from pseudo trajectory \(y_{-n+1} ,\ldots ,y_{-1} ,y_0 \) and equation \(z_{n+1} =F\left( {z_n } \right) \) with \(y_{-m/2} =z_{-m/2} \). The starting point \(z_{-m/2} \) is perturbed to generate some candidate trajectories using random variable \(\zeta \), which is Gaussian with zero mean and standard deviation of the difference between the truth and \(z_{-m/2} \). Then, ensemble initial conditions are selected from the candidate trajectories using a likelihood function

$$\begin{aligned} L\left( {z^{*}} \right) =\frac{1}{2}\mathop \sum \limits _{n=-m/2}^0 \left[ {h\left( {z_n^*} \right) -S_n } \right] ^{T}{\Gamma }^{-1}\left[ {h\left( {z_n^*} \right) -S_n } \right] \end{aligned}$$

where \({\Gamma }^{-1}\) is the inverse of the covariance matrix, \(z_n^*\) is candidate trajectory and the end component of selected candidate trajectory is considered as ensemble member. The observation is \(S_n =h\left( {X_n } \right) +\eta _n \), where \(h\left( . \right) \) is the observation operator and the observational noise is \(\eta _n \in R^{2}\) where \(X_n =\left( {x_n ,y_n } \right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdechiri, M., Faez, K. & Amindavar, H. Exploring chaotic attractors in nonlinear dynamical system under fractal theory. Multidim Syst Sign Process 29, 1643–1659 (2018). https://doi.org/10.1007/s11045-017-0521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0521-9

Keywords

Navigation