Skip to main content
Log in

Two-dimensional strip spectral correlation algorithm to fast estimation of 2D-cyclic spectral function for texture analysis

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new affective scheme to estimate the two-dimensional cyclic spectral function of a texture as a two-dimensional signal. Recently, considering textures as cyclostationary signals, several algorithms have been introduced to utilize the more discriminant features of hidden periodicity for texture analysis, such as one-dimensional strip spectral correlation analysis (1D-SSCA), one-dimensional FFT-accumulated method, and direct frequency smoothing method. Although the reported results of these algorithms are proper, all of them suffer a drawback: they sweep texture images row by row and column by column and analyze them as one-dimensional signals, and hence lose the relationships between neighboring pixels. In this paper a new efficient extended algorithm namely two-dimensional SSCA is proposed to estimate the two-dimensional cyclic spectral function for two-dimensional signals. This algorithm is fast respect to other cyclic spectral function estimators and is based on 1D-SSCA algorithm. The effectiveness of the proposed algorithm is evaluated on three well-known databases. The experimental results illustrate that the proposed scheme is computationally efficient, generates flexible features and improves correct classification rate, in comparison with other studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abadi, M., & Grandchamp, E. (2006). Legendre spectrum for texture classification. In: 2006 8th International conference on signal processing (Vol. 2). IEEE.

  • Al Nadi, D. A., & Mansour, A. M. (2008). Independent component analysis (ICA) for texture classification. In 5th International multi-conference on systems, signals and devices, 2008 (IEEE SSD 2008) (pp. 1–5). IEEE.

  • Amirani, M. C., & Shirazi, A. A. B. (2008). Texture classification using cyclic spectral function. In: 2008 Congress on image and signal processing (pp. 834–838).

  • Amirani, M. C., & Shirazi, A. A. B. (2009). Evaluation of the texture analysis using spectral correlation function. Fundamenta Informaticae, 95(2–3), 245–262.

    MathSciNet  Google Scholar 

  • Brodatz, P. (1966). Textures: A photographic album for artists and designers. New York: Dover.

    Google Scholar 

  • Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

    Article  Google Scholar 

  • Burghouts, G. J., & Geusebroek, J. M. (2009). Material-specific adaptation of color invariant features. Pattern Recognition Letters, 30(3), 306–313.

    Article  Google Scholar 

  • Cheng, Q., Zhou, H., & Cheng, J. (2011). The fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1217–1233.

    Article  Google Scholar 

  • Crosier, M., & Griffin, L. D. (2010). Using basic image features for texture classification. International Journal of Computer Vision, 88(3), 447–460.

    Article  MathSciNet  Google Scholar 

  • Dong, Y., Tao, D., Li, X., Ma, J., & Pu, J. (2015). Texture classification and retrieval using shearlets and linear regression. IEEE Transactions on Cybernetics, 45(3), 358–369.

    Article  Google Scholar 

  • Fritz, M., Hayman, E., Caputo, B., & Eklundh, J. O. (2004). The KTH-TIPS database.

  • Gardner, W. A. (1986a). Statistical spectral analysis: A nonprobabilistic theory. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Gardner, W. A. (1986b). The spectral correlation theory of cyclostationary time-series. Signal Processing, 11(1), 13–36.

    Article  Google Scholar 

  • Gardner, W. A. (1987). Spectral correlation of modulated signals: Part I—Analog modulation. IEEE Transactions on Communications, 35(6), 584–594.

    Article  MathSciNet  MATH  Google Scholar 

  • Gardner, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.

    Article  Google Scholar 

  • Gardner, W. A. (Ed.). (1994). An introduction to cyclostationary signals. In Cyclostationarity in Communications and Signal Processing, IEEE Press (pp. 1–90).

  • Gardner, W. A., Brown, W., & Chen, C. K. (1987). Spectral correlation of modulated signals: Part II—Digital modulation. IEEE Transactions on Communications, 35(6), 595–601.

    Article  MATH  Google Scholar 

  • Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  MATH  Google Scholar 

  • Hayman, E., Caputo, B., Fritz, M., & Eklundh, J. O. (2004). On the significance of real-world conditions for material classification. In European conference on computer vision (pp. 253–266). Berlin: Springer.

  • Heikkilä, M., Pietikäinen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42(3), 425–436.

    Article  MATH  Google Scholar 

  • Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University.

  • Iakovidis, D. K., Keramidas, E. G., & Maroulis, D. (2008). Fuzzy local binary patterns for ultrasound texture characterization. In International conference image analysis and recognition (pp. 750–759). Berlin: Springer.

  • Ji, H., Yang, X., Ling, H., & Xu, Y. (2013). Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Transactions on Image Processing, 22(1), 286–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Junior, J. J. D. M. S., & Backes, A. R. (2016). ELM based signature for texture classification. Pattern Recognition, 51, 395–401.

    Article  Google Scholar 

  • Khellah, F. M. (2011). Texture classification using dominant neighborhood structure. IEEE Transactions on Image Processing, 20(11), 3270–3279.

    Article  MathSciNet  MATH  Google Scholar 

  • Laine, A., & Fan, J. (1993). Texture classification by wavelet packet signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1186–1191.

    Article  Google Scholar 

  • Li, X., Hu, W., Zhang, Z., & Wang, H. (2010). Heat kernel based local binary pattern for face representation. IEEE Signal Processing Letters, 17(3), 308–311.

    Article  Google Scholar 

  • Liao, S., Law, M. W., & Chung, A. C. (2009). Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing, 18(5), 1107–1118.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, L., Lao, S., Fieguth, P. W., Guo, Y., Wang, X., & Pietikäinen, M. (2016). Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing, 25(3), 1368–1381.

    Article  MathSciNet  Google Scholar 

  • Lu, C. S., Chung, P. C., & Chen, C. F. (1997). Unsupervised texture segmentation via wavelet transform. Pattern Recognition, 30(5), 729–742.

    Article  Google Scholar 

  • Mao, J., & Jain, A. K. (1992). Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25(2), 173–188.

    Article  Google Scholar 

  • Qian, X., Hua, X. S., Chen, P., & Ke, L. (2011). PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognition, 44(10), 2502–2515.

    Article  Google Scholar 

  • Quan, Y., Xu, Y., Sun, Y., & Luo, Y. (2014). Lacunarity analysis on image patterns for texture classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 160–167).

  • Rabiner, L. R. (1996). Multirate digital signal processing. Englewood Cliffs: Prentice Hall.

  • Recio, J. A. R., Fernández, L. A. R., & Fernández-Sarriá, A. (2005). Use of Gabor filters for texture classification of digital images. Física de la Tierra, 17, 47.

    Google Scholar 

  • Roberts, R. S., Brown, W. A., & Loomis, H. H. (1991). Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 8(2), 38–49.

    Article  Google Scholar 

  • Rosiles, J. G., Upadhyayula, S., & Cabrera, S. D. (2008). Rotationally-blind texture classification using frame sequential approximation error curves. In 2008 IEEE international conference on acoustics, speech and signal processing (pp. 1325–1328). IEEE.

  • Sahami, S., & Amirani, M. C. (2013). Matrix based cyclic spectral estimator for fast and robust texture classification. The Visual Computer, 29(12), 1245–1257.

    Article  Google Scholar 

  • Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press.

    Google Scholar 

  • Song, K., Yan, Y., Zhao, Y., & Liu, C. (2015). Adjacent evaluation of local binary pattern for texture classification. Journal of Visual Communication and Image Representation, 33, 323–339.

    Article  Google Scholar 

  • Tiwari, D., & Tyagi, V. (2016). Dynamic texture recognition based on completed volume local binary pattern. Multidimensional Systems and Signal Processing, 27(2), 563–575.

    Article  Google Scholar 

  • Tuzel, O., Porikli, F., & Meer, P. (2006). Region covariance: A fast descriptor for detection and classification. In:European conference on computer vision (pp. 589–600). Berlin: Springer.

  • Unser, M. (1995). Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing, 4(11), 1549–1560.

    Article  MathSciNet  Google Scholar 

  • Wang, Z. Z., & Yong, J. H. (2008). Texture analysis and classification with linear regression model based on wavelet transform. IEEE Transactions on Image Processing, 17(8), 1421–1430.

    Article  MathSciNet  Google Scholar 

  • Zhang, J., Marszałek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2), 213–238.

    Article  Google Scholar 

  • Zhao, Y., Zhang, L., Li, P., & Huang, B. (2007). Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1458–1468.

    Article  Google Scholar 

  • Xu, Y., Huang, S., Ji, H., & Fermüller, C. (2012). Scale-space texture description on SIFT-like textons. Computer Vision and Image Understanding, 116(9), 999–1013.

    Article  Google Scholar 

  • Xu, Y., Ji, H., & Fermüller, C. (2009). Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision, 83(1), 85–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Chehel Amirani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihandoost, S., Chehel Amirani, M. Two-dimensional strip spectral correlation algorithm to fast estimation of 2D-cyclic spectral function for texture analysis. Multidim Syst Sign Process 29, 1119–1134 (2018). https://doi.org/10.1007/s11045-017-0492-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0492-x

Keywords

Navigation