Skip to main content
Log in

Wavelet inpainting by fractional order total variation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Image inpainting in the wavelet domain refers to the recovery of an image from incomplete wavelet coefficients. In this paper, we propose a wavelet inpainting model by using fractional order total variation regularization approach. Moreover, we use a simple but very efficient primal–dual algorithm to calculate the optimal solution. In the light of saddle-point theory, the convergence of new algorithm is guaranteed. Experimental results are presented to show performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arrow, K., Hurwicz, L., & Uzawa, H. (1958). Studies in linear and nonlinear programming. In K. J. Arrow (Ed.), Mathematical studies in the social sciences. Palo Alto, CA: Stanford University Press.

  • Aujol, J.-F., Ladjal, S., & Masnou, S. (2011). Exemplar-based inpainting from a variational point of view. International Journal of Computer Vision, 93(3), 319–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, J., & Feng, X. (2007). Fractional-order anisotropic diffusion for image denoising. IEEE Transactions on Image Processing, 16(10), 2492–2502.

    Article  MathSciNet  Google Scholar 

  • Bertalmo, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proceedings of SIGGRAPH (pp. 417–424).

  • Bonettini, S., & Ruggiero, V. (2012). On the convergence of primal–dual hybrid gradient algorithms for total variation image restoration. Journal of mathematical Imaging and Vision, 44(3), 236–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, J. F., Chan, R. H., & Shen, Z. (2008). A framelet-based image inpainting algorithm. Applied and Computational Harmonic Analysis, 24(2), 131–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.

    MathSciNet  MATH  Google Scholar 

  • Chambolle, A., & Pock, T. (2010). A first-order primal–dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T., & Shen, J. (2001a). Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 62(3), 1019–1043.

    MathSciNet  MATH  Google Scholar 

  • Chan, T., & Shen, J. (2001b). Non-texture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 4(12), 436–449.

    Article  Google Scholar 

  • Chan, T., & Shen, J. (2002). Euler’s elastica and curvature-based inpainting. SIAM Journal on Applied Mathematics, 63(2), 564–592.

    MathSciNet  MATH  Google Scholar 

  • Chan, T., Shen, J., & Zhou, H. (2006). Total variation wavelet inpainting. Journal of Mathematical Imaging and Vision, 25(1), 107–125.

    Article  MathSciNet  Google Scholar 

  • Chen, D., Chen, Y., & Xue, D. (2011). Digital fractional order Savitzky–Golay differentiator. IEEE Transactions on Circuits and Systems II, 58(11), 758–762.

    Article  Google Scholar 

  • Chen, D., Sheng, H., Chen, Y., & Xue, D. (1990). Fractional-order variational optical flow model for motion estimation. Philosophical Transactions of the Royal Society A, 2013, 371.

    Google Scholar 

  • Chen, D., Sun, S., Zhang, C., Chen, Y., & Xue, D. (2013). Fractional order TV-L2 model for image denoising. Berlin: Central European Journal of Physics.

    Google Scholar 

  • Chen, D. Q., & Cheng, L. Z. (2010). Alternative minimisation algorithm for non-local total variational image deblurring. IET Image Processing, 4(5), 353–364.

    Article  Google Scholar 

  • Cohen, A., Daubeches, I., & Feauveau, J. C. (1992). Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45(5), 485–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Criminisi, A., Perez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 200–1212.

    Article  Google Scholar 

  • Durand, S., & Froment, J. (2003). Reconstruction of wavelet coefficients using total variation minimization. SIAM Journal on Scientific Computing, 24, 1754–1767.

    Article  MathSciNet  MATH  Google Scholar 

  • Elad, M., Starck, J., Querre, P., & Donoho, D. (2005). Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied and Computational Harmonic Analysis, 19, 340–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Esser, E., Zhang, X., & Chan, T. F. (2010). A general framework for a class of first order primal–dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4), 1015–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. SIAM Multiscale Modeling and Simulation, 7(3), 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  • He, B., & Yuan, X. (2012). Convergence analysis of primal–dual algorithms for a saddle-point problem: From contraction perspective. SIAM Journal on Imaging Sciences, 5(1), 119–149.

    Article  MathSciNet  MATH  Google Scholar 

  • He, L., & Wang, Y. (2014). Iterative support detection-based split Bregman method for wavelet frame-based image inpainting. IEEE Transactions on Image Processing, 23(12), 5470–5485.

    Article  MathSciNet  MATH  Google Scholar 

  • Idczak, D., & Kamocki, R. (2015). Fractional differential repetitive processes with Riemann–Liouville and Caputo derivatives. Multidimensional Systems and Signal Processing, 26, 193–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, K. H., & Ye, J. C. (2015). Annihilating filter-based low-rank Hankel matrix approach for image inpainting. IEEE Transactions on Image Processing, 24(11), 3498–3511.

    Article  MathSciNet  Google Scholar 

  • Kingsbury, N. (2001). Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 10(3), 234–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, S.-C., & Chang, S. (1997). Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Transactions on Image Processing, 6(8), 1176–1184.

    Article  Google Scholar 

  • Peyre, G., Bougleux, S., & Cohen, L. (2011). Non-local regularization of inverse problems. Inverse Problems and Imaging, 5(2), 511–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Pu, Y. F., Zhou, J. L., & Yuan, X. (2010). Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement. IEEE Transactions on Image Processing, 19(2), 491–511.

    Article  MathSciNet  MATH  Google Scholar 

  • Ron, A., & Shen, Z. (1997). Affine systems in \(l^{2}(r^{d})\): The analysis of the analysis operator. Journal of Functional Analysis, 148, 408–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., & Chen, K. (2015). A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM Journal on Imaging Sciences, 8(4), 2487–2518.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., Wei, Z., & Xiao, L. (2012). Adaptive fractional-order multiscale method for image denoising. Journal of Mathematical Imaging and Vision, 43(1), 39–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Burger, M., & Osher, S. (2011). A unified primal–dual algorithm framework based on Bregman iteration. Journal of Scientific Computing, 46(1), 20–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X. Q., Burger, M., Bresson, X., & Osher, S. (2010). Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3(3), 253–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X. Q., & Chan, T. F. (2010). Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 4(1), 191–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, M., & Chan, T. (2008). An efficient primal–dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA, Los Angeles, CA

Download references

Acknowledgements

The authors would like to thank the associate editor and reviewers for helpful comments that greatly improved the paper. This work was supported by the National Natural Science Foundation of China (Nos. 61301243, 61201455), Natural Science Foundation of Shandong Province of China (Nos. ZR2013FQ007, ZR2014AQ014), and the Fundamental Research Funds for the Central Universities (No. 15CX02060A) the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Yin, H. Wavelet inpainting by fractional order total variation. Multidim Syst Sign Process 29, 299–320 (2018). https://doi.org/10.1007/s11045-016-0465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0465-5

Keywords

Navigation