Skip to main content
Log in

Performance analysis of narrowband beamforming using fully and partial adaptive beamformers with a spherical array

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This research proposes an improved narrowband partial adaptive beamformer analysis using a proposed spherical array. Comparison between the fully and the partial adaptive beamformers is given. The study is performed by investigating performance parameters like the beamformer output signal-to-noise ratio and the beamformer output signal-to-interference-plus-noise ratio both in the steady state and along adaptation. Furthermore, computational complexity and convergence speed of the proposed sensor arrangement are also analyzed and examples are given. The results demonstrate that this beamformer considerably reduces the number of complex operations and features faster convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abhayapala, T.D., & Ward, D. B. (2002). Theory and design of high order sound field microphones using spherical microphone array. In IEEE international conference on acoustics, speech, and signal processing (ICASSP) (Vol. 2, pp. 1949–1952).

  • Benesty, J., Chen, J., & Huang, Y. (2008). Microphone array signal processing (Vol. 1). Berlin: Springer Science & Business Media.

    Google Scholar 

  • Brandstein, M., & Ward, D. (2001). Microphone arrays: Signal processing techniques and applications. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Burmeister, L. C. (1985). A Monte Carlo procedure for straight convecting boundaries. International Journal of Heat and Mass Transfer, 28(3), 717–720.

    Article  MATH  Google Scholar 

  • Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418.

    Article  Google Scholar 

  • Chapman, D. J. (1976). Partial adaptivity for the large array. IEEE Transactions on Antennas and Propagation, 24(5), 685–696.

    Article  Google Scholar 

  • Cioffi, J. M., & Kailath, T. (1984). Fast, recursive-least-squares transversal filters for adaptive filtering. IEEE Transactions on Acoustics, Speech and Signal Processing, 32(2), 304–337.

    Article  MATH  Google Scholar 

  • Collin, R. E., & Zucker, F. J. (1969). Antenna theory. New York: McGraw-Hill Book Co.

  • Dhiman, J., Ahmad, S., & Gulia, K. (2013). Comparison between adaptive filter algorithms (LMS, NLMS and RLS). International Journal of Science, Engineering and Technology Research, 2(5), 1100.

    Google Scholar 

  • Duttweiler, D. L. (2000). Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Transactions on Speech and Audio Processing, 8(5), 508–518.

    Article  Google Scholar 

  • Ehrenberg, L., Gannot, S., Leshem, A., & Zehavi, E. (2010). Sensitivity analysis of MVDR and MPDR beamformers. In IEEE 26th convention of electrical and electronics engineers in Israel (IEEEI) (pp. 000416–000420). IEEE.

  • Fuhrmann, D. R., Kelly, E. J., & Nitzberg, R. (1992). A Cfar adaptive matched filter detector. IEEE Transactions on Aerospace and Electronic Systems, 28(1), 208–216.

    Article  Google Scholar 

  • Gao, K., Ahmad, M. O., & Swamy, M. N. S. (1992). Learning algorithm for total least-squares adaptive signal processing. Electronics Letters, 28(4), 430–432.

    Article  Google Scholar 

  • Griffiths, J. W. R. (1983). Adaptive array processing. A tutorial. IEE Proceedings F Communications, Radar and Signal Processing, 130(1), 3.

    Article  Google Scholar 

  • Haykin, S., Justice, J. H., Owsley, N. L., Yen, J. L., & Kak, A. C. (1985). Array signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc.

  • Hudson, J. E. (1981). Adaptive array principles. Peregrinus: Institution of Electrical Engineers.

    Book  Google Scholar 

  • Ilyas, M. Z., Noor, A. O. A., Ishak, K. A., Hussain, A., & Samad, S. A. (2008). Normalized least mean square adaptive noise cancellation filtering for speaker verification in noisy environments. In International conference on electronic design. ICED. (pp. 1–4). IEEE.

  • Jablon, N. K. (1986). Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections. IEEE Transactions on Antennas and Propagation, 34(8), 996–1012.

    Article  Google Scholar 

  • Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice Hall, Inc.

  • Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94.

    Article  Google Scholar 

  • Lambert, J. R., Balanis, C., DeCarl, D., et al. (2009). Spherical cap adaptive antennas for gps. IEEE Transactions on Antennas and Propagation, 57(2), 406–413.

    Article  Google Scholar 

  • Li, Y., Vicente, L. M., Ho, K. C., Kwan, C., Lun, D. P. K., & Leung, Y. H. (2008). A study of the partially adaptive concentric ring array. Circuits, Systems & Signal Processing, 27(5), 733–748.

    Article  MATH  Google Scholar 

  • Manolakis, D. G., Ingle, V. K., & Kogon, S. M. (2005). Statistical and adaptive signal processing: Spectral estimation, signal modeling, adaptive filtering, and array processing (Vol. 46). Norwood: Artech House.

    Google Scholar 

  • Meyer, J., & Elko, G. (2002). A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield. In IEEE international conference on acoustics, speech, and signal processing (ICASSP), 2002 (Vol. 2, pp. 1781–1784). IEEE.

  • Nickel, U. (2006). Fundamentals of signal processing for phased array radar. Technical report, DTIC Document.

  • Owsley, N. L. (1985). Sonar array processing. In S. Haykin (Ed.), Array signal processing (pp. 115–193). Englewood Cliffs, NJ: Prentice Hall.

  • Piper, J. E. (2011). Beamforming narrowband and broadband signals, sonar systems. Prof. Nikolai Kolev, InTech.

  • Rafaely, B. (2005). Analysis and design of spherical microphone arrays. IEEE Transactions on Speech and Audio Processing, 13(1), 135–143.

    Article  Google Scholar 

  • Rafaely, B. (2008). Spatial sampling and beamforming for spherical microphone arrays. In Hands-free speech communication and microphone arrays, 2008. HSCMA 2008 (pp. 5–8). IEEE.

  • Rafaely, B. (2015). Fundamentals of spherical array processing. Springer Topics in Signal Processing (Vol. 8, pp. 101–123). Berlin, Heidelberg: Springer-Verlag.

  • Rafaely, B., Balmages, I., & Eger, L. (2007). High-resolution plane-wave decomposition in an auditorium using a dual-radius scanning spherical microphone array. The Journal of the Acoustical Society of America, 122(5), 2661–2668.

    Article  Google Scholar 

  • Rubinstein, R. Y., & Kroese, D. P. (2011). Simulation and the Monte Carlo method (Vol. 707). Amsterdam: Wiley.

    MATH  Google Scholar 

  • Saff, E. B., & Kuijlaars, A. B. J. (1997). Distributing many points on a sphere. The Mathematical Intelligencer, 19(1), 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Trees, H. L. (2004). Detection, estimation, and modulation theory, optimum array processing. Amsterdam: Wiley.

    Google Scholar 

  • Van Veen, B. D., Roberts, R., et al. (1987). Partially adaptive beamformer design via output power minimization. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(11), 1524–1532.

    Article  Google Scholar 

  • Veen, B. V. (1988). Improved power minimization based partially adaptive beamformer design. In 1988 International Conference on Acoustics, Speech, and Signal Processing. ICASSP. (pp. 2793–2796). IEEE.

  • Wang, L. (2009). Array signal processing algorithms for beamforming and direction finding. Doctoral dissertation, University of York.

  • Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. Englewood Cliffs, NJ, Prentice-Hall Inc., 491 p. 1.

  • Xenaki, A., Jacobsen, F., Tiana-Roig, E., & Grande, E. F. (2010). Improving the resolution of beamforming measurements on wind turbines. In Proceedings of 20th international congress on acoustics, ICA, Sydney, Australia (pp. 23–27).

  • Yan, S., Sun, H., Svensson, U. P., Ma, X., & Hovem, J. M. (2011). Optimal modal beamforming for spherical microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing, 19(2), 361–371.

    Article  Google Scholar 

  • Zatman, M. (1998). How narrow is narrowband? IEE Proceedings-Radar, Sonar and Navigation, 145(2), 85–91.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by University of Castilla-La Mancha. Cuenca (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mateo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A.M., Mateo, J. & Vicente, L.M. Performance analysis of narrowband beamforming using fully and partial adaptive beamformers with a spherical array. Multidim Syst Sign Process 28, 1325–1341 (2017). https://doi.org/10.1007/s11045-016-0398-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0398-z

Keywords

Navigation