Skip to main content
Log in

A novel semisupervised support vector machine classifier based on active learning and context information

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel semisupervised support vector machine classifier \((\hbox {S}^{3}\hbox {VM})\) based on active learning (AL) and context information to solve the problem where the number of labeled samples is insufficient. Firstly, a new semisupervised learning method is designed using AL to select unlabeled samples as the semilabled samples, then the context information is exploited to further expand the selected samples and relabel them, along with the labeled samples train \(\hbox {S}^{3}\hbox {VM}\) classifier. Next, a new query function is designed to enhance the reliability of the classification results by using the Euclidean distance between the samples. Finally, in order to enhance the robustness of the proposed algorithm, a fusion method is designed. Several experiments on change detection are performed by considering some real remote sensing images. The results show that the proposed algorithm in comparison with other algorithms can significantly improve the detection accuracy and achieve a fast convergence in addition to verify the effectiveness of the fusion method developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anand, S., Mittal, S., Tuzel, O., & Meer, P. (2014). Semi-supervised kernel mean shift clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1201–1215. doi:10.1109/TPAMI.2013.190.

    Article  Google Scholar 

  • Bazi, Y., Melgani, F., & Al-Sharari, H. D. (2010). Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3178–3187.

    Article  Google Scholar 

  • Bovolo, F., Bruzzone, L., & Marconcini, M. (2008). A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2070–2082. doi:10.1109/TGRS.2008.916643.

    Article  Google Scholar 

  • Bruzzone, L., & Persello, C. (2009). A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2142–2154. doi:10.1109/TGRS.2008.2011983.

    Article  Google Scholar 

  • Celik, T. (2010). Change detection in satellite images using a genetic algorithm approach. IEEE Geoscience and Remote Sensing Letters, 7(2), 386–390. doi:10.1109/LGRS.2009.2037024.

    Article  Google Scholar 

  • Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-Supervised Learning. Cambridge, MA: MIT Press.

  • D’Elia, C., Ruscino, S., Abbate, M., Aiazzi, B., Baronti, S., & Alparone, L. (2014). SAR image classification through information-theoretic textural features, MRF segmentation, and object-oriented learning vector quantization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1116–1126. doi:10.1109/JSTARS.2014.2304700.

    Article  Google Scholar 

  • Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 1014–1031. doi:10.1109/TGRS.2010.2072929.

    Article  Google Scholar 

  • Didaci, L., Fumera, G., & Roli, F. (2012). Analysis of co-training algorithm with very small training sets. In G. Gimel’farb, E. Hancock, A. Imiya, A. Kuijper, M. Kudo, S. Omachi, et al. (Eds.), Structural, syntactic, and statistical pattern recognition (Vol. 7626, pp. 719–726)., Lecture notes in computer science Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Espinola, M., Piedra-Fernandez, J. A., Ayala, R., Iribarne, L., & Wang, J. Z. (2015). Contextual and hierarchical classification of satellite images based on cellular automata. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 795–809. doi:10.1109/TGRS.2014.2328634.

    Article  Google Scholar 

  • Geiß, C., & Taubenböck, H. (2013). Remote sensing contributing to assess earthquake risk: From a literature review towards a roadmap. Natural Hazards, 68(1), 7–48. doi:10.1007/s11069-012-0322-2.

    Article  Google Scholar 

  • Gomez-Chova, L., Bruzzone, L., Camps-Valls, G., & Calpe-Maravilla, J. (2008). Semi-supervised remote sensing image classification based on clustering and the mean map Kernel. In Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, 7–11 July 2008, Vol. 4, (pp. IV-391–IV-394). doi10.1109/IGARSS.2008.4779740.

  • Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4238–4249. doi:10.1109/TGRS.2015.2393857.

    Article  Google Scholar 

  • Habib, T., Inglada, J., Mercier, G., & Chanussot, J. (2009). Support vector reduction in SVM algorithm for abrupt change detection in remote sensing. IEEE Geoscience and Remote Sensing Letters, 6(3), 606–610. doi:10.1109/LGRS.2009.2020306.

    Article  Google Scholar 

  • Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74. doi:10.1016/j.rse.2011.08.024.

    Article  Google Scholar 

  • Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18–28. doi:10.1109/5254.708428.

    Article  Google Scholar 

  • Izquierdo-Verdiguier, E., Laparra, V., Gomez-Chova, L., & Camps-Valls, G. (2013). Encoding invariances in remote sensing image classification with SVM. IEEE Geoscience and Remote Sensing Letters, 10(5), 981–985. doi:10.1109/LGRS.2012.2227297.

    Article  Google Scholar 

  • Han, J., Zhang, D., Gong, C., Lei, G., & Jinchang, R. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325–3337. doi:10.1109/TGRS.2014.2374218.

    Article  Google Scholar 

  • Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2015b). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1309–1321. doi:10.1109/TCSVT.2014.2381471.

    Article  Google Scholar 

  • Kawakita, M., & Kanamori, T. (2013). Semi-supervised learning with density-ratio estimation. Machine Learning, 91(2), 189–209. doi:10.1007/s10994-013-5329-8.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Bioucas-Dias, J. M., & Plaza, A. (2010). Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4085–4098. doi:10.1109/TGRS.2010.2060550.

    Google Scholar 

  • Maulik, U., & Chakraborty, D. (2012). A novel semisupervised SVM for pixel classification of remote sensing imagery. International Journal of Machine Learning and Cybernetics, 3(3), 247–258. doi:10.1007/s13042-011-0059-3.

    Article  Google Scholar 

  • Maulik, U., & Chakraborty, D. (2014). Fuzzy preference based feature selection and semisupervised SVM for cancer classification. IEEE Transactions on NanoBioscience, 13(2), 152–160. doi:10.1109/TNB.2014.2312132.

    Article  Google Scholar 

  • Munoz-Mari, J., Tuia, D., & Camps-Valls, G. (2012). Semisupervised classification of remote sensing images with active queries. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3751–3763. doi:10.1109/TGRS.2012.2185504.

    Article  Google Scholar 

  • Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., & Emery, W. J. (2014). SVM active learning approach for image classification using spatial information. IEEE Transactions on Geoscience and Remote Sensing, 52(4), 2217–2233. doi:10.1109/TGRS.2013.2258676.

    Article  Google Scholar 

  • Persello, C., & Bruzzone, L. (2014). Active and semisupervised learning for the classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 6937–6956. doi:10.1109/TGRS.2014.2305805.

    Article  Google Scholar 

  • Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support vector machines. In Proc. 17th International Conf. on Machine Learning (pp. 839–846). San Francisco, CA: Morgan Kaufmann.

  • Scholkopf, B., Kah-Kay, S., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T., et al. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758–2765. doi:10.1109/78.650102.

    Article  Google Scholar 

  • Shahshahani, B. M., & Landgrebe, D. A. (1994). The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087–1095. doi:10.1109/36.312897.

    Article  Google Scholar 

  • Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Munoz-Mari, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing, 5(3), 606–617. doi:10.1109/JSTSP.2011.2139193.

    Article  Google Scholar 

  • Yi, Y., Wu, J., & Xu, W. (2011). Incremental SVM based on reserved set for network intrusion detection. Expert Systems with Applications, 38(6), 7698–7707.

    Article  Google Scholar 

  • Zhao, C., Li, X., Ren, J., & Marshall, S. (2013). Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery. International Journal of Remote Sensing, 34(24), 8669–8684. doi:10.1080/01431161.2013.845924.

    Article  Google Scholar 

  • Zhu, X. (2010). Semi-supervised learning. In C. Sammut & G. Webb (Eds.), Encyclopedia of machine learning (pp. 892–897). Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaotian Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (61071139; 61471019; 61171122; 61501011), the Aeronautical Science Foundation of China (20142051022), the Pre-research Project(9140A07040515HK01009), the National Natural Science Foundation of China (NNSFC) under the RSE-NNSFC Joint Project (2012-2014) (61211130210) with Beihang University, and the RSE-NNSFC Joint Project (2012-2014) (61211130309) with Anhui University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Lv, W., Zhang, Y. et al. A novel semisupervised support vector machine classifier based on active learning and context information. Multidim Syst Sign Process 27, 969–988 (2016). https://doi.org/10.1007/s11045-016-0396-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0396-1

Keywords

Navigation