Skip to main content
Log in

Modeling viscoelastic behavior in flexible multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Viscoelasticity plays an important role in the dynamic response of flexible multibody systems. First, single degree-of-freedom joints, such as revolute and prismatic joints, are often equipped with elastomeric components that require complex models to capture their nonlinear behavior under the expected large relative motions found at these joints. Second, flexible joints, often called force or bushing elements, present similar challenges and involve up to six degrees of freedom. Finally, flexible components such as beams, plates, and shells also exhibit viscoelastic behavior. This paper presents a number of viscoelastic models that are suitable for these three types of applications. For single degree-of-freedom joints, models that capture their nonlinear, frequency-dependent, and frequency-independent behavior are necessary. The generalized Maxwell model is a classical model of linear viscoelasticity that can be extended easily to flexible joints. This paper also shows how existing viscoelastic models can be applied to geometrically exact beams, based on a three-dimensional representation of the quasi-static strain field in those structures. The paper presents a number of numerical examples for three types of applications. The shortcomings of the Kelvin–Voigt model, which is often used for flexible multibody systems, are underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Flügge, W.: Viscoelasticity, second revised edn. Springer, New York (1975)

    MATH  Google Scholar 

  2. Christensen, R.M.: Theory of Viscoelasticity. An Introduction, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  3. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon, Oxford (1968)

    Google Scholar 

  4. Banks, H.T., Inman, D.J.: On damping mechanisms in beams. J. Appl. Mech. 58(3), 716–723 (1991)

    MATH  Google Scholar 

  5. Simo, J.C., Hjelmstad, K.D., Taylor, R.L.: Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput. Methods Appl. Mech. Eng. 42(3), 301–330 (1984)

    MATH  Google Scholar 

  6. Mata, P., Oller, S., Barbat, A.H.: Dynamic analysis of beam structures considering geometric and constitutive nonlinearity. Comput. Methods Appl. Mech. Eng. 197(6–8), 857–878 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    MATH  Google Scholar 

  8. Linn, J., Lang, H., Tuganov, A.: Geometrically exact Cosserat rods with Kelvin-Voigt type viscous damping. Mech. Sci. 4, 79–96 (2013)

    Google Scholar 

  9. Abdel-Nasser, A.M., Shabana, A.A.: A nonlinear viscoelastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26(3), 57–79 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Antman, S.S.: Invariant dissipative mechanisms for the spatial motion of rods suggested by artificial viscosity. J. Elast. 70, 55–64 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Lang, H., Linn, J., Arnold, M.: Multibody dynamics simulation of geometrically exact Cosserat rods. Multibody Syst. Dyn. 25(3), 285–312 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Schulze, M., Dietz, S., Burgermeister, B., Tuganov, A., Lang, H., Linn, J., Arnold, M.: Integration of nonlinear models of flexible body deformation in multibody system dynamics. J. Comput. Nonlinear Dyn. 9(1), 011012 (2013)

    Google Scholar 

  13. Lang, H., Leyendecker, S., Linn, J.: Numerical experiments for viscoelastic Cosserat rods with Kelvin–Voigt damping. In: Terze, b.Z., Vrdoljak, M. (eds.) Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics, pp. 453–462 (2013)

    Google Scholar 

  14. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood Cliffs (1969)

    Google Scholar 

  15. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  16. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, New-York (2011)

    MATH  Google Scholar 

  17. Haupt, P., Sedlan, K.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modeling. Arch. Appl. Mech. 71(5), 89–109 (2001)

    MATH  Google Scholar 

  18. Höfer, P., Lion, A.: Modeling of frequency- and amplitude-dependent material properties of filler-reinforced rubber. J. Mech. Phys. Solids 57(4), 500–520 (2009)

    MATH  Google Scholar 

  19. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-\(\alpha \) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129(1), 149–179 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Welsh, W.A.: Simulation and correlation of a helicopter air-oil strut dynamic response. In: American Helicopter Society 43rd Annual Forum Proceedings, St. Louis, Missouri (1987)

    Google Scholar 

  22. Welsh, W.A.: Dynamic modeling of a helicopter lubrication system. In: American Helicopter Society 44th Annual Forum Proceedings, Washington, D.C. (1988)

    Google Scholar 

  23. Borri, M., Bottasso, C.L.: An intrinsic beam model based on a helicoidal approximation. Part I: formulation. Part II: linearization and finite element implementation. Int. J. Numer. Methods Eng. 37, 2267–2309 (1994)

    MATH  Google Scholar 

  24. McRobie, F.A., Lasenby, J.: Simo-Vu-Quoc rods using Clifford algebra. Int. J. Numer. Methods Eng. 45(4), 377–398 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Merlini, T., Morandini, M.: The helicoidal modeling in computational finite elasticity. Part I: variational formulation. Part II: multiplicative interpolation. Int. J. Solids Struct. 41(18–19), 5351–5409 (2004)

    MATH  Google Scholar 

  26. Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 268(1), 451–474 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic Lie group variational integrator for a geometrically exact beam in R3. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3492–3512 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  30. Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer, New York (2005)

    MATH  Google Scholar 

  31. Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parameterizations of motion. Multibody Syst. Dyn. 4, 129–193 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Study, E.: Geometrie der Dynamen. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  33. Martinez, J.M.R., Duffy, J.: The principle of transference: history, statement and proof. Mech. Mach. Theory 28(1), 165–177 (1993)

    Google Scholar 

  34. Han, S.L., Bauchau, O.A.: Manipulation of motion via dual entities. Nonlinear Dyn. 85(1), 509–524 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Bauchau, O.A., Choi, J.Y.: The vector parameterization of motion. Nonlinear Dyn. 33(2), 165–188 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Dimentberg, F.M.: The screw calculus and its applications. Technical Report AD 680993, Clearinghouse for Federal and Scientific Technical Information, Virginia, USA (1968)

  37. Lin, Q., Burdick, J.W.: Objective and frame-invariant kinematic metric functions for rigid bodies. Int. J. Robot. Res. 19(6), 612–625 (2000)

    Google Scholar 

  38. Bauchau, O.A., Han, S.L.: Three-dimensional beam theory for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041011 (2014)

    Google Scholar 

  39. Han, S.L., Bauchau, O.A.: Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. 34(3), 211–242 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  41. Tsai, S.W., Hahn, H.T.: Introduction to Composite Materials. Technomic Publishing Co., Inc., Westport (1980)

    Google Scholar 

  42. Han, S.L., Bauchau, O.A.: On Saint-Venant’s problem for helicoidal beams. J. Appl. Mech. 83(2), 021009 (2016)

    Google Scholar 

  43. Han, S.L., Bauchau, O.A.: Spectral formulation for geometrically exact beams: a motion interpolation based approach. AIAA J. 57(10), 4278–4290 (2019)

    Google Scholar 

  44. Han, S.L., Bauchau, O.A.: Nonlinear, three-dimensional beam theory for dynamic analysis. Multibody Syst. Dyn. 41(2), 173–200 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G.C., Mussi, F.: Anisotropic beam theory and applications. Comput. Struct. 16(1–4), 403–413 (1983)

    MATH  Google Scholar 

  47. Hodges, D.H.: Nonlinear Composite Beam Theory. AIAA, Reston (2006)

    Google Scholar 

  48. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions - a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(1), 125–161 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Borri, M., Merlini, T.: A large displacement formulation for anisotropic beam analysis. Meccanica 21, 30–37 (1986)

    MATH  Google Scholar 

  50. Danielson, D.A., Hodges, D.H.: A beam theory for large global rotation, moderate local rotation, and small strain. J. Appl. Mech. 55(1), 179–184 (1988)

    Google Scholar 

  51. Volovoi, V.V., Hodges, D.H., Berdichevsky, V.L., Sutyrin, V.G.: Dynamic dispersion curves for non-homogeneous, anisotropic beams with cross sections of arbitrary geometry. J. Sound Vib. 215, 1101–1120 (1998)

    Google Scholar 

  52. Bauchau, O.A., Craig, J.I.: Structural Analysis with Application to Aerospace Structures. Springer, New-York (2009)

    Google Scholar 

  53. Bauchau, O.A., Wang, J.L.: Stability analysis of complex multibody systems. J. Comput. Nonlinear Dyn. 1(1), 71–80 (2006)

    Google Scholar 

  54. Bauchau, O.A., Wang, J.L.: Stability evaluation and system identification of flexible multibody systems. Multibody Syst. Dyn. 18(1), 95–106 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier A. Bauchau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauchau, O.A., Nemani, N. Modeling viscoelastic behavior in flexible multibody systems. Multibody Syst Dyn 51, 159–194 (2021). https://doi.org/10.1007/s11044-020-09767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09767-5

Keywords

Navigation