Skip to main content

Advertisement

Log in

A referenced nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We develop a referenced nodal coordinate formulation (RNCF) to study the dynamics of flexible bodies undergoing large-distance travels and/or high-speed rotations. RNCF is similar to the absolute nodal coordinate formulation (ANCF) but is presented in a noninertia reference coordinate system (RCS). The position vector and rotation matrix of the RCS describe translational and rotational motions of the system, whereas the nodal coordinates and slopes in a structure depict its large deformations, such that the generalized coordinates with multiple scales in length and time are automatically separated. We develop a parameter-irrelevant technique to derive the rotation equations of the system, where the influences of large deformations on the rotatory inertia tensors are embodied. The derived governing equations are simple and elegant, and consistent with the governing equations for rigid bodies, the floating frame of reference method, as well as ANCF. We verify the RNCF approach by three typical examples, including the spin-up maneuver, the high speed motor, and the flexible slider-crank mechanism. The results indicate that to achieve the same accuracy, the computational cost for RNCF is much lower than that for the corresponding ANCF in high-speed rotating systems. Moreover, the electrical solar wind sail spacecraft system is formulated by RNCF, and its propulsive efficiencies with respect to the spin rates of the E-sails are studied by full-scale models with over ten thousand degrees of freedom. RNCF provides an effective way to formulate and study the dynamics of vehicles, trains, ships, aircrafts, and spacecrafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985). https://doi.org/10.1016/0045-7825(85)90050-7

    Article  MATH  Google Scholar 

  2. Simo, J.C., Vu-Quoc, L.: Three dimensional finite strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986). https://doi.org/10.1016/0045-7825(86)90079-4

    Article  MATH  Google Scholar 

  3. Shabana, A.A.: Computational Continuum Mechanics, pp. 270–320. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  4. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32, 67–85 (2014). https://doi.org/10.1007/s11044-013-9374-7

    Article  MathSciNet  Google Scholar 

  5. Ren, H.: A simple absolute nodal coordinate formulation for thin beams with large deformations and large rotations. J. Comput. Nonlinear Dyn. 10(6), 061005 (2015). https://doi.org/10.1115/1.4028610

    Article  Google Scholar 

  6. Ren, H.: Fast and robust full-quadrature triangular elements for thin plates/shells with large deformations and large rotations. J. Comput. Nonlinear Dyn. 10(5), 051018 (2015). https://doi.org/10.1115/1.4030212

    Article  Google Scholar 

  7. Crisfield, M., Galvanetto, U., Jelenić, G.: Dynamics of 3-D co-rotational beams. Comput. Mech. 20, 507–519 (1997). https://doi.org/10.1007/s004660050271

    Article  MATH  Google Scholar 

  8. Hsiao, K.M., Lin, J.Y., Lin, W.Y.: A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput. Methods Appl. Mech. Eng. 169(1–2), 1–18 (1999). https://doi.org/10.1016/S0045-7825(98)00152-2

    Article  MATH  Google Scholar 

  9. Jonker, J.B., Meijaard, J.P.: A geometrically nonlinear formulation of a three-dimensional beam element for solving large deflection multibody system problems. Int. J. Non-Linear Mech. 53, 63–74 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.01.012

    Article  Google Scholar 

  10. Jelenić, G., Crisfield, M.: Interpolation of rotational variables in nonlinear dynamics of 3D beams. Int. J. Numer. Methods Eng. 43(7), 1193–1222 (1998). https://doi.org/10.1002/(SICI)1097-0207(19981215)43:73.0.CO;2-P

    Article  MathSciNet  MATH  Google Scholar 

  11. Shabana, A.A.: Dynamics of Multibody Systems 3rd edn. pp. 28–158. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  12. Recuero, A.M., Escalona, J.L.: Application of the trajectory coordinate system and the moving modes method approach to railroad dynamics using Krylov subspaces. J. Sound Vib. 332(20), 5177–5191 (2013). https://doi.org/10.1016/j.jsv.2013.04.015

    Article  Google Scholar 

  13. Sugiyama, H., Shabana, A.A.: Trajectory coordinate constraints in multibody railroad vehicle systems. J. Syst. Des. Dyn. 1(3), 481–490 (2007). https://doi.org/10.1299/jsdd.1.481

    Article  Google Scholar 

  14. Shabana, A.A.: Geometrically accurate floating frame of reference finite elements for the small deformation problem. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 232, 286–292 (2018)

    Google Scholar 

  15. Shabana, A.A., Chamorro, R., Rathod, C.: A multi-body system approach for finite-element modelling of rail flexibility in railroad vehicle applications. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 222(1), 1–15 (2008). https://doi.org/10.1243/14644193JMBD117

    Article  Google Scholar 

  16. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221, 219–231 (2007)

    Google Scholar 

  17. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  Google Scholar 

  18. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007). https://doi.org/10.1115/1.2389231

    Article  Google Scholar 

  19. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized–alpha time integration of constrained flexible multibody systems. Mech. Mach. Theory 48(1), 121–137 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.07.017

    Article  Google Scholar 

  20. Janhunen, P.: Status report of the electric sail in 2009. Acta Astronaut. 68(5–6), 567–570 (2009). https://doi.org/10.1016/j.actaastro.2010.02.007

    Article  Google Scholar 

  21. Janhunen, P.: Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys. 27, 3089–3100 (2009). https://doi.org/10.5194/angeo-27-3089-2009

    Article  Google Scholar 

  22. Janhunen, Pe., Toivanen, P., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E., Seppänen, H., Kurppa, R., Ukkonen, J., Kiprich, S., Thornell, G., Kratz, H., Richter, L., Krömer, O., Rosta, R., Noorma, M., Envall, J., Lätt, S., Mengali, G., Obraztsov, A.: Invited article: electric solar wind sail: toward test missions. Rev. Sci. Instrum. 81, 111301 (2010). https://doi.org/10.1063/1.3514548

    Article  Google Scholar 

  23. Toivanen, P., Janhunen, P.: Electric solar wind sail: deployment, long-term dynamics, and control hardware requirements. In: MacDonald, M. (ed.) Advances in Solar Sailing. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-34907-2_58

    Chapter  Google Scholar 

  24. Toivanen, P.K., Janhunen, P.: Spin plane control and thrust vectoring of electric solar wind sail. J. Propuls. Power 29(1), 178–185 (2013). https://doi.org/10.2514/1.B34330

    Article  Google Scholar 

  25. Janhunen, P.: Photonic spin control for solar wind electric sail. Acta Astronaut. 83, 85–90 (2013). https://doi.org/10.1016/j.actaastro.2012.10.017

    Article  Google Scholar 

  26. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 29, 91–105 (2011). https://doi.org/10.1007/s11044-010-9242-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Seppänen, H., Kiprich, S., Kurppa, S., Janhunen, P., Hæggström, E.: Wire-to-wire bonding of μm-diameter aluminum wires for the electric solar wind sail. Microelectron. Eng. 83(11), 3267–3269 (2011). https://doi.org/10.1016/j.mee.2011.07.002

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundations of China (NSFC) under grant number 11772101, the Shanghai Academy of Spaceflight Technology under grant number SAST 2017-025, and the National Key Research and Development Program of China under Grant number 2018YFF0300506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivations of Eqs. (6) and (12)

The angular velocity \({\boldsymbol{\omega }}(t)\) and infinitesimal rotation \(\delta {\boldsymbol{\pi }}\) in the body coordinate system for a rotation motion \({\mathbf{A}}(t)\) are calculated by

$$ \widetilde{{\boldsymbol{\omega }}}={\mathbf{A}}^{T}\dot{\mathbf{A}},\quad \widetilde{\delta {\boldsymbol{\pi }}}={\mathbf{A}}^{T}\delta {\mathbf{A}}. $$

The variation of an arbitrary function \(c\left ({\mathbf{A}}\right )\) can be calculated by

$$ \delta {c}=\frac{\partial {c}}{\partial {\mathbf{A}}}\delta {\mathbf{A}}= \frac{\partial {c}}{\partial {\mathbf{A}}}{\mathbf{A}} \widetilde{\delta {\boldsymbol{\pi }}}=\sum _{a=1}^{3}{\sum _{b=1}^{3}{\sum _{c=1}^{3}{ \sum _{d=1}^{3}{\frac{\partial {c}}{\partial {A}_{ab}}{A}_{ac}\epsilon _{bcd} \delta \pi _{d}}}}}, $$

where \(\epsilon _{abc}\) is the alternative tensor such that \(\left ({\boldsymbol{ x}}\times {\boldsymbol{ y}}\right )_{a}=\sum _{b=1}^{3}{ \sum _{c=1}^{3}{\epsilon _{abc}x_{b}y_{c}}}\), and hence

$$ \frac{\partial {c}}{\partial \pi _{d}}=\sum _{a=1}^{3}{\sum _{b=1}^{3}{ \sum _{c=1}^{3}{\epsilon _{bcd}\frac{\partial {c}}{\partial {A}_{ab}}{A}_{ac}}}}, $$

which is equivalent to

$$ \left (\frac{\partial {c}}{\partial {\boldsymbol{\pi }}}\right )^{T}=\sum _{a=1}^{3}{ \frac{\partial {c}}{\partial {\mathbf{A}}_{a:}}\times \left ({ \mathbf{A}}_{a:}\right )^{T}}. $$
(28)

Now consider a special case that \(c={\boldsymbol{ a}}^{T}{\mathbf{A}}^{T}(t){\boldsymbol{ c}}\), where \({\boldsymbol{ a}}\) and \({\boldsymbol{ c}}\) are constant vectors. Then direct calculations yield

$$ \left (\frac{\partial {c}}{\partial {\boldsymbol{\pi }}}\right )^{T}= \widetilde{\boldsymbol{ a}}{\mathbf{A}}^{T}{\boldsymbol{ c}},\quad \frac{\partial ^{2}{c}}{\partial {\boldsymbol{\pi }}\partial {\boldsymbol{\pi }}^{T}}= \widetilde{\boldsymbol{ a}} \widetilde{\left ({\mathbf{A}}^{T}{\boldsymbol{ c}}\right )}. $$
(29)

Moreover, suppose the rotation motion is described by a three-component parameter \({\boldsymbol{\vartheta }}\), and the angular velocity and the infinitesimal rotation can be written as [11]

$$ {\boldsymbol{\omega }}={\boldsymbol{ D}}\left ({\boldsymbol{\vartheta }}\right ) \dot{\boldsymbol{\vartheta }},\quad \delta {\boldsymbol{\pi }}={\boldsymbol{ D}}\left ({ \boldsymbol{\vartheta }}\right )\delta {\boldsymbol{\vartheta }}, $$
(30)

respectively, and by Eqs. (4) and (30),

$$ \frac{\partial {\mathscr {K}}}{\partial \dot{\boldsymbol{\vartheta }}^{T}}=\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial \dot{\boldsymbol{\vartheta }}}\right )^{T} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}={\boldsymbol{ D}}^{T} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}},\quad \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\vartheta }}^{T}}=\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}\right )^{T} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}+{\boldsymbol{ D}}^{T} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}. $$

Then direct calculation yields

$$ \frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial \dot{\boldsymbol{\vartheta }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\vartheta }}^{T}} ={ \boldsymbol{ D}}^{T}\left (\frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}\right )+\left ( \dot{\boldsymbol{ D}}^{T}-\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}\right )^{T} \right )\frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}-{ \boldsymbol{ D}}^{T}\frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}. $$
(31)

In Appendix C, the following formula will be proved:

$$ \dot{\boldsymbol{ D}}^{T}-\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}\right )^{T}={ \boldsymbol{ D}}^{T}\widetilde{\boldsymbol{\omega }}. $$
(32)

Substituting Eq. (32) into Eq. (31) yields

$$ \frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial \dot{\boldsymbol{\vartheta }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\vartheta }}^{T}}={\boldsymbol{ D}}^{T} \left [\frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}+{\boldsymbol{\omega }} \times \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}\right ]. $$
(33)

By Eqs. (3), (4), and (29),

$$ \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}=d^{\alpha }{ \boldsymbol{ q}}_{\alpha }\times \left ({\mathbf{A}}^{T}\dot{\mathbf{r}} \right )+M^{\alpha \beta }{\boldsymbol{ q}}_{\alpha }\times \left ( \dot{\boldsymbol{ q}}_{\beta }+{\boldsymbol{\omega }}\times {\boldsymbol{ q}}_{\beta } \right ),\quad \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}=d^{ \alpha }\left (\dot{\boldsymbol{ q}}_{\alpha }+{\boldsymbol{\omega }}\times { \boldsymbol{ q}}_{\alpha }\right )\times \left ({\mathbf{A}}^{T} \dot{\mathbf{r}}\right ), $$

which can be substituted into Eq. (33), and Eq. (6) can be derived by direct calculations.

Moreover, suppose the virtual work done by the applied force can be written as

$$ \delta {\mathscr {W}}=\delta {\boldsymbol{\pi }}\cdot {\boldsymbol{ t}}+\cdots =\delta { \boldsymbol{\vartheta }}^{T}{\boldsymbol{ D}}^{T}{\boldsymbol{ t}}+\cdots ,$$

and the Lagrange equations with constraints can be written as

$$ \frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial \dot{\boldsymbol{\vartheta }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\vartheta }}^{T}}+\left ( \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\vartheta }}}\right )^{T}{ \boldsymbol{\lambda }}={\boldsymbol{ D}}^{T}{\boldsymbol{ t}}, $$

where \({\mathbf{C}}=0\) indicates the holonomic constraint equations. Direct calculations yield that

$$ \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\vartheta }}}= \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\pi }}} \frac{\partial {\boldsymbol{\pi }}}{\partial {\boldsymbol{\vartheta }}}= \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\pi }}}{\boldsymbol{ D}}. $$

The Lagrange equations with constraints for the three-component parameter \({\boldsymbol{\vartheta }}\) are

$$ \frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial \dot{\boldsymbol{\vartheta }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\vartheta }}^{T}}+\left ( \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\vartheta }}}\right )^{T}{ \boldsymbol{\lambda }}={\boldsymbol{ D}}^{T}\left [\frac{d}{dt} \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}+{\boldsymbol{\omega }} \times \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}+\left ( \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\pi }}}\right )^{T}{ \boldsymbol{\lambda }}\right ]={\boldsymbol{ D}}^{T}{\boldsymbol{ t}}. $$

The choice of the three-component parameter \({\boldsymbol{\vartheta }}\) is arbitrary, and in any specific configuration, it is always possible to find a proper \({\boldsymbol{\vartheta }}\) such that \({\boldsymbol{ D}}\) is invertible. Hence the rotation equations for constrained flexible bodies can be written as

$$ \frac{d}{dt}\frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}+{ \boldsymbol{\omega }}\times \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\omega }}^{T}}- \frac{\partial {\mathscr {K}}}{\partial {\boldsymbol{\pi }}^{T}}+\left ( \frac{\partial {\mathbf{C}}}{\partial {\boldsymbol{\pi }}}\right )^{T}{ \boldsymbol{\lambda }}={\boldsymbol{ t}}, $$
(34)

where the partial derivatives with respect to the infinitesimal rotation \(\delta {\boldsymbol{\pi }}\) can be evaluated by Eq. (28) or Eq. (29). Equation (12) can be derived by substitution of Eqs. (6) and (10) into Eq. (34).

Appendix B: A simplified ANCF/RNCF element for space tethers

Consider the \(k\)th element of the tether with a uniform isotropic material and a uniform cross section, whose undeformed configuration is a straight line, with the arclength coordinate \(x_{k-1}\leq {x}\leq {x}_{k}\). The generalized coordinates of the element are

$$ {\boldsymbol{ q}}_{1}(t)={\mathbf{p}}\left (x_{k-1},\,t\right ),\quad { \boldsymbol{ q}}_{2}(t)={\mathbf{p}}_{x}\left (x_{k-1},\,t\right ),\quad { \boldsymbol{ q}}_{3}(t)={\mathbf{p}}\left (x_{k},\,t\right ),\quad { \boldsymbol{ q}}_{4}(t)={\mathbf{p}}_{x}\left (x_{k},\,t\right ), $$

and Hermite polynomials are adopted to interpolate the position vector, so the corresponding shape functions are

$$ \begin{aligned} &s^{1}\left (x\right )=1-3\xi ^{2}+2\xi ^{3},\qquad s^{2}\left (x \right )=l_{k}(\xi -2\xi ^{2}+\xi ^{3}),\\ &s^{3}\left (x\right )=3 \xi ^{2}-2\xi ^{3},\qquad s^{4}\left (x\right )=l_{k}(\xi ^{3}-\xi ^{2}), \end{aligned} $$

where \(l_{k}=x_{k}-x_{k-1}\) and \(\xi =\left (x-x_{k-1}\right )/{l_{k}}\). The kinetic energy of the element in the RCS can be written as

$$ {\mathscr {K}}_{k}=\frac{1}{2}m_{k}\dot{\mathbf{r}}\cdot \dot{\mathbf{r}}+d_{k}^{i}\dot{\mathbf{r}}\cdot \left ({\mathbf{A}}{ \boldsymbol{ v}}_{i}\right )+\frac{1}{2}M_{k}^{ij}{\boldsymbol{ v}}_{i}\cdot { \boldsymbol{ v}}_{j}, $$
(35)

where \(m_{k}\) is the mass of the element, and

$$ {\boldsymbol{ v}}_{i}=\dot{\boldsymbol{ q}}_{i}+{\boldsymbol{\omega }}\times {\boldsymbol{ q}}_{i}, \quad d_{k}^{i}=\int _{x_{k-1}}^{x_{k}}{\rho s^{i}\left (x\right )dx}, \quad M_{k}^{ij}=\int _{x_{k-1}}^{x_{k}}{\rho s^{i}\left (x\right )s^{j} \left (x\right )dx}. $$
(36)

The reference configuration can be described by

$$ \mathring{\boldsymbol{ q}}_{1}=\left (x_{k-1},\;0,\;0\right )^{T},\quad \mathring{\boldsymbol{ q}}_{2}=\left (1,\;0,\;0\right )^{T},\quad \mathring{\boldsymbol{ q}}_{3}=\left (x_{k},\;0,\;0\right )^{T},\quad \mathring{\boldsymbol{ q}}_{4}=\left (1,\;0,\;0\right )^{T}, $$

and it is easy to check that \(\left \| \mathring{\mathbf{p}}_{x}\left (x\right )\right \| =1\). The axial strain of the cable can be written as

$$ \varepsilon \left (x,\,t\right )=\frac{1}{2}\left ({\boldsymbol{ r}}_{x} \left (x,\,t\right )\cdot {\boldsymbol{ r}}_{x}\left (x,\,t\right )-1 \right ). $$

where \({\boldsymbol{ r}}_{x}\left (x,\,t\right )={\mathbf{A}}\left (t\right ){\mathbf{p}}_{x}\left (x,\,t\right )\) by Eq. (1). The unit tangential vector in the element is

$$ {\boldsymbol{ i}}\left (x,\,t\right )= \frac{{\boldsymbol{ r}}_{x}\left (x,\,t\right )}{\left \| {\boldsymbol{ r}}_{x}\left (x,\,t\right )\right \| }, $$

and the curvature of the tether can be evaluated by

$$ {\boldsymbol{\kappa }}\left (x,\,t\right )= \frac{{\partial {\boldsymbol{ i}}\left (x,\,t\right )}/\partial {x}}{\left \| {\boldsymbol{ r}}_{x}\left (x,\,t\right )\right \| }= \frac{{\boldsymbol{ r}}_{x}\left (x,\,t\right )\times {\boldsymbol{ r}}_{xx}\left (x,\,t\right )}{\left \| {\boldsymbol{ r}}_{x}\left (x,\,t\right )\right \| ^{3}}, $$

The stretch in the tether is expected to be small in practice, such that \(\left \| {\boldsymbol{ r}}_{x}\left (x,\,t\right )\right \| \approx 1\), and

$$ {\boldsymbol{ i}} \approx {\boldsymbol{ r}}_{x},\quad {\boldsymbol{\kappa }}\cdot {\boldsymbol{\kappa }}= \frac{\left ({\boldsymbol{ r}}_{x}\cdot {\boldsymbol{ r}}_{x}\right )\left ({\boldsymbol{ r}}_{xx}\cdot {\boldsymbol{ r}}_{xx}\right )-\left ({\boldsymbol{ r}}_{x}\cdot {\boldsymbol{ r}}_{xx}\right )^{2}}{\left \| {\boldsymbol{ r}}_{x}\right \| ^{6}} \approx \left ({\mathbf{p}}_{x}\cdot {\mathbf{p}}_{x}\right )\left ({ \mathbf{p}}_{xx}\cdot {\mathbf{p}}_{xx}\right )-\left ({\mathbf{p}}_{x} \cdot {\mathbf{p}}_{xx}\right )^{2}. $$

Then the elastic potential energy of the element can be calculated by

$$\begin{aligned} {\mathscr {U}}_{k}^{e} =&\frac{1}{2}\int _{x_{k-1}}^{x_{k}}{EA \varepsilon ^{2}\left (x,\,t\right )dx}+\frac{1}{2}\int _{x_{k-1}}^{x_{k}}{EI \left \| {\boldsymbol{\kappa }}\left (x,\,t\right )\right \| ^{2}dx}\\ =&\frac{1}{2} \kappa _{k}^{\mathit{ijmn}}Q_{ij}(t)Q_{mn}(t)+\frac{1}{2}\upsilon _{k}^{\mathit{ijmn}}P_{ij}(t)P_{mn}(t) \end{aligned}$$

for \(i,j,m,n=1,2,3,4\),

$$ \begin{aligned} &\kappa _{k}^{\mathit{ijmn}}=\int _{x_{k-1}}^{x_{k}}{EAs_{x}^{i}\left (x\right )s_{x}^{j} \left (x\right )s_{x}^{m}\left (x\right )s_{x}^{n}\left (x\right )dx}, \qquad Q_{ij}(t)=\frac{1}{2}\left ({\boldsymbol{ q}}_{i}(t)\cdot { \boldsymbol{ q}}_{j}(t)-\mathring{\boldsymbol{ q}}_{i}\cdot \mathring{\boldsymbol{ q}}_{j}\right ),\\ & P_{ij}(t)=\frac{1}{2}{ \boldsymbol{ q}}_{i}(t)\cdot {\boldsymbol{ q}}_{j}(t), \end{aligned} $$

and

$$\begin{aligned} \upsilon _{k}^{\mathit{ijmn}} =&\int _{x_{k-1}}^{x_{k}}EI\left [2\left (s_{x}^{i}s_{x}^{j}s_{xx}^{m}s_{xx}^{n}+s_{xx}^{i}s_{xx}^{j}s_{x}^{m}s_{x}^{n} \right )\right. \\ &\left.{}-\left (s_{xx}^{i}s_{x}^{j}s_{xx}^{m}s_{x}^{n}+s_{x}^{i}s_{xx}^{j}s_{xx}^{m}s_{x}^{n}+s_{xx}^{i}s_{x}^{j}s_{x}^{m}s_{xx}^{n}+s_{x}^{i}s_{xx}^{j}s_{x}^{m}s_{xx}^{n} \right )\right ]dx. \end{aligned}$$

Then the elastic force is

$$ {\boldsymbol{ F}}_{ke}^{i}=\left (\kappa _{k}^{\mathit{ijmn}}Q_{mn}+\upsilon _{k}^{\mathit{ijmn}}P_{mn} \right ){\boldsymbol{ q}}_{j}. $$
(37)

The virtual work done by the thrust force and the gravitational force on the element is

$$\begin{aligned} \delta {\mathscr {W}}_{k} =&\int _{x_{k-1}}^{x_{k}}{\delta {\boldsymbol{ r}}^{p} \cdot \left \{ c\max \left (0,V_{0}-V_{1}\right )\left [{\boldsymbol{ i}} \times \left ( \frac{r_{\oplus }{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{2}} \times {\boldsymbol{ i}}\right )\right ]-\rho g \frac{r_{\oplus }^{2}\mathbf{r}}{\left \| {\mathbf{r}}\right \| ^{3}} \right \} dx} \\ \approx &\int _{x_{k-1}}^{x_{k}}{\delta {\boldsymbol{ r}}^{p} \cdot \left \{ c\max \left (0,V_{0}-V_{1}\right )\left [{\boldsymbol{ r}}_{x} \times \left ( \frac{r_{\oplus }{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{2}} \times {\boldsymbol{ r}}_{x}\right )\right ]-\rho g \frac{r_{\oplus }^{2}\mathbf{r}}{\left \| {\mathbf{r}}\right \| ^{3}} \right \} dx} \\ =&\delta {\mathbf{r}}\cdot \left ({\boldsymbol{ F}}_{kt}+{ \boldsymbol{ F}}_{kg}\right )+\delta {\boldsymbol{\pi }}\cdot \left [{\boldsymbol{ q}}_{i} \times \left ({\boldsymbol{ Q}}_{kt}^{i}+{\boldsymbol{ Q}}_{kg}^{i}\right ) \right ]+\delta {\boldsymbol{ q}}_{i}\cdot \left ({\boldsymbol{ Q}}_{kt}^{i}+{ \boldsymbol{ Q}}_{kg}^{i}\right ), \end{aligned}$$

where the generalized forces are

$$\begin{aligned} \begin{aligned} &{\boldsymbol{ F}}_{kt}=\zeta _{k}^{ij}\left ({\mathbf{A}}{\boldsymbol{ q}}_{i} \right )\times \left [ \frac{r_{\oplus }{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{2}} \times \left ({\mathbf{A}}{\boldsymbol{ q}}_{j}\right )\right ],\qquad { \boldsymbol{ F}}_{kg}=-m_{k}g \frac{r_{\oplus }^{2}{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{3}}, \\ & {\boldsymbol{ Q}}_{kt}^{i}=\iota _{k}^{\mathit{ijm}}{\boldsymbol{ q}}_{j}\times \left ( \frac{r_{\oplus }{\mathbf{A}}^{T}{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{2}} \times {\boldsymbol{ q}}_{m}\right ),\qquad {\boldsymbol{ Q}}_{kg}^{i}=-gd_{k}^{i} \frac{r_{\oplus }^{2}{\mathbf{A}}^{T}{\mathbf{r}}}{\left \| {\mathbf{r}}\right \| ^{3}}, \end{aligned} \end{aligned}$$
(38)

in which \(\zeta _{k}^{ij}=c\max \left (0,\;V_{0}-V_{1}\right )\hat{\zeta }_{k}^{ij}\) and \(\iota _{k}^{\mathit{ijm}}=c\max \left (0,\;V_{0}-V_{1}\right )\hat{\iota }_{k}^{\mathit{ijm}}\) with

$$ \hat{\zeta }_{k}^{ij}=\int _{x_{k-1}}^{x_{k}}{s_{x}^{i}\left (x \right )s_{x}^{j}\left (x\right )dx},\qquad \hat{\iota }_{k}^{\mathit{ijm}}= \int _{x_{k-1}}^{x_{k}}{s^{i}\left (x\right )s_{x}^{j}\left (x\right )s_{x}^{m} \left (x\right )dx}. $$

The constants \(d_{k}^{i}\), \(M_{k}^{ij}\), and \(\hat{\zeta}_{k}^{ij}\) can be analytically evaluated to get the following matrices

$$ {\boldsymbol{ d}}_{k}=m_{k}\left( \textstyle\begin{array}{c} \frac{1}{2} \\ \frac{l_{k}}{12} \\ \frac{1}{2} \\ -\frac{l_{k}}{12} \end{array}\displaystyle \right),\; {\mathbf{M}}_{k}=m_{k}\left( \textstyle\begin{array}{cccc} \frac{13}{35} & \frac{11l_{k}}{210} & \frac{9}{70} & -\frac{13l_{k}}{420} \\ \frac{11l_{k}}{210} & \frac{l_{k}^{2}}{105} & \frac{13l_{k}}{420} & -\frac{l_{k}^{2}}{140} \\ \frac{9}{70} & \frac{13l_{k}}{420} & \frac{13}{35} & -\frac{11l_{k}}{210} \\ -\frac{13l_{k}}{420} & -\frac{l_{k}^{2}}{140} & -\frac{11l_{k}}{210} & \frac{l_{k}^{2}}{105} \end{array}\displaystyle \right),\; \hat{\boldsymbol{\zeta}}_{k}=\left( \textstyle\begin{array}{cccc} \frac{6}{5l_{k}} & \frac{1}{10} & -\frac{6}{5l_{k}} & \frac{1}{10} \\ \frac{1}{10} & \frac{2l_{k}}{15} & -\frac{1}{10} & -\frac{l_{k}}{30} \\ -\frac{6}{5l_{k}} & -\frac{1}{10} & \frac{6}{5l_{k}} & -\frac{1}{10} \\ \frac{1}{10} & -\frac{l_{k}}{30} & -\frac{1}{10} & \frac{2l_{k}}{15} \end{array}\displaystyle \right) $$

and the constant tensor \(\hat{\iota}_{k}^{ijm}\) can be evaluated to get the following \(\hat{\boldsymbol{\iota}}_{k}^{i}\) matrices with

$$\begin{aligned} \begin{aligned} \hat{\boldsymbol{\iota}}_{k}^{1}=\left( \textstyle\begin{array}{cccc} \frac{3}{5l_{k}} & -\frac{1}{70} & -\frac{3}{5l_{k}} & \frac{4}{35} \\ -\frac{1}{70} & \frac{43l_{k}}{420} & \frac{1}{70} & -\frac{l_{k}}{60} \\ -\frac{3}{5l_{k}} & \frac{1}{70} & \frac{3}{5l_{k}} & -\frac{4}{35} \\ \frac{4}{35} & -\frac{l_{k}}{60} & -\frac{4}{35} & \frac{13l_{k}}{420} \end{array}\displaystyle \right),\qquad \hat{\boldsymbol{\iota}}_{k}^{2}=\left( \textstyle\begin{array}{cccc} \frac{9}{70} & \frac{l_{k}}{140} & -\frac{9}{70} & \frac{3l_{k}}{140} \\ \frac{l_{k}}{140} & \frac{l_{k}^{2}}{120} & -\frac{l_{k}}{140} & -\frac{l_{k}^{2}}{840} \\ -\frac{9}{70} & -\frac{l_{k}}{140} & \frac{9}{70} & -\frac{3l_{k}}{140} \\ \frac{3l_{k}}{140} & -\frac{l_{k}^{2}}{840} & -\frac{3l_{k}}{140} & \frac{l_{k}^{2}}{168} \end{array}\displaystyle \right) \\ \hat{\boldsymbol{\iota}}_{k}^{3}=\left( \textstyle\begin{array}{cccc} \frac{3}{5l_{k}} & \frac{4}{35} & -\frac{3}{5l_{k}} & -\frac{1}{70} \\ \frac{4}{35} & \frac{13l_{k}}{420} & -\frac{4}{35} & -\frac{l_{k}}{60} \\ -\frac{3}{5l_{k}} & -\frac{4}{35} & \frac{3}{5l_{k}} & \frac{1}{70} \\ -\frac{1}{70} & -\frac{l_{k}}{60} & \frac{1}{70} & \frac{43l_{k}}{420} \end{array}\displaystyle \right),\qquad \hat{\boldsymbol{\iota}}_{n}^{4}=\left( \textstyle\begin{array}{cccc} -\frac{9}{70} & -\frac{3l_{k}}{140} & \frac{9}{70} & -\frac{l_{k}}{140} \\ -\frac{3l_{k}}{140} & \frac{-l_{k}^{2}}{168} & \frac{3l_{k}}{140} & \frac{l_{k}^{2}}{840} \\ \frac{9}{70} & \frac{3l_{k}}{140} & -\frac{9}{70} & \frac{l_{k}}{140} \\ -\frac{l_{k}}{140} & \frac{l_{k}^{2}}{840} & \frac{l_{k}}{140} & \frac{-l_{k}^{2}}{120} \end{array}\displaystyle \right) \end{aligned} \end{aligned}$$

Moreover, the stiffness tensors \(\kappa _{k}^{\mathit{ijmn}}\) and \(\upsilon _{k}^{\mathit{ijmn}}\) can be evaluated analytically too, but since they are complicated, it is better to calculate them numerically using Gauss quadratures.

Appendix C: Proof of formula (32)

Suppose the rotational matrix \({\mathbf{A}}=\left ({\boldsymbol{ x}},\,{\boldsymbol{ y}},\,{\boldsymbol{ z}} \right )\) is described by a three-component-parameter vector \({\boldsymbol{\vartheta }}\). The angular velocity \({}\boldsymbol{\omega }\) can be calculated from \(\widetilde{\boldsymbol{\omega }}={\mathbf{A}}^{T}\dot{\mathbf{A}}=\left ({ \boldsymbol{ x}},\,{\boldsymbol{ y}},\,{\boldsymbol{ z}}\right )^{T}\left ( \dot{\boldsymbol{ x}},\,\dot{\boldsymbol{ y}},\,\dot{\boldsymbol{ z}}\right )\). Hence the angular velocity can be explicitly written as

$$ \omega =\left ( \textstyle\begin{array}{c} {\boldsymbol{ z}}\cdot \dot{\boldsymbol{ y}} \\ {\boldsymbol{ x}}\cdot \dot{\boldsymbol{ z}} \\ {\boldsymbol{ y}}\cdot \dot{\boldsymbol{ x}} \end{array}\displaystyle \right )=\sum _{a=1}^{3}{\left ( \textstyle\begin{array}{c} {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a} \\ {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a} \\ {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}={\boldsymbol{ D}}\left ({\boldsymbol{\vartheta }} \right )\dot{\boldsymbol{\vartheta }} ,\quad {\boldsymbol{ D}}=\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3} \\ {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3} \\ {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3} \end{array}\displaystyle \right ), $$
(39)

where \({\boldsymbol{ x}}_{a}\equiv {\partial {\boldsymbol{ x}}}/{\partial \vartheta _{a}}\), \({\boldsymbol{ y}}_{a}\equiv {\partial {\boldsymbol{ y}}}/{\partial \vartheta _{a}}\), and \({\boldsymbol{ z}}_{a}\equiv {\partial {\boldsymbol{ z}}}/{\partial \vartheta _{a}}\), and \({\boldsymbol{ D}}\) is the same as that in Eq. (30). So the time derivative of \({\boldsymbol{ D}}\) is

$$ \dot{\boldsymbol{ D}}=\sum _{a=1}^{3}{\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ y}}_{1} & {\boldsymbol{ z}}_{a}\cdot { \boldsymbol{ y}}_{2} & {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ y}}_{3} \\ {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ z}}_{1} & {\boldsymbol{ x}}_{a}\cdot { \boldsymbol{ z}}_{2} & {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ z}}_{3} \\ {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ x}}_{1} & {\boldsymbol{ y}}_{a}\cdot { \boldsymbol{ x}}_{2} & {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ x}}_{3} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}+\sum _{a=1}^{3}{\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1a} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2a} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3a} \\ {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1a} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2a} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3a} \\ {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1a} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2a} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3a} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}, $$
(40)

and the partial derivative \({\partial {\boldsymbol{\omega }}}/{\partial {\boldsymbol{\vartheta }}}\) can be directly calculated by

$$ \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}=\sum _{a=1}^{3}{ \left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}_{1}\cdot {\boldsymbol{ y}}_{a} & {\boldsymbol{ z}}_{2}\cdot { \boldsymbol{ y}}_{a} & {\boldsymbol{ z}}_{3}\cdot {\boldsymbol{ y}}_{a} \\ {\boldsymbol{ x}}_{1}\cdot {\boldsymbol{ z}}_{a} & {\boldsymbol{ x}}_{2}\cdot { \boldsymbol{ z}}_{a} & {\boldsymbol{ x}}_{3}\cdot {\boldsymbol{ z}}_{a} \\ {\boldsymbol{ y}}_{1}\cdot {\boldsymbol{ x}}_{a} & {\boldsymbol{ y}}_{2}\cdot { \boldsymbol{ x}}_{a} & {\boldsymbol{ y}}_{3}\cdot {\boldsymbol{ x}}_{a} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}+\sum _{a=1}^{3}{\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1a} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2a} & {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3a} \\ {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1a} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2a} & {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3a} \\ {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1a} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2a} & {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3a} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}. $$
(41)

Then by Eqs. (40) and (41) the left-hand side of Eq. (32) becomes

$$ \dot{\boldsymbol{ D}}^{T}-\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}\right )^{T}= \sum _{a=1}^{3}{\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c} {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ y}}_{1}-{\boldsymbol{ z}}_{1}\cdot { \boldsymbol{ y}}_{a}, & {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ z}}_{1}-{\boldsymbol{ x}}_{1} \cdot {\boldsymbol{ z}}_{a}, & {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ x}}_{1}-{ \boldsymbol{ y}}_{1}\cdot {\boldsymbol{ x}}_{a} \\ {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ y}}_{2}-{\boldsymbol{ z}}_{2}\cdot { \boldsymbol{ y}}_{a}, & {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ z}}_{2}-{\boldsymbol{ x}}_{2} \cdot {\boldsymbol{ z}}_{a}, & {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ x}}_{2}-{ \boldsymbol{ y}}_{2}\cdot {\boldsymbol{ x}}_{a} \\ {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ y}}_{3}-{\boldsymbol{ z}}_{3}\cdot { \boldsymbol{ y}}_{a}, & {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ z}}_{3}-{\boldsymbol{ x}}_{3} \cdot {\boldsymbol{ z}}_{a}, & {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ x}}_{3}-{ \boldsymbol{ y}}_{3}\cdot {\boldsymbol{ x}}_{a} \end{array}\displaystyle \right )\dot{\vartheta }_{a}}. $$
(42)

Since \({\boldsymbol{ x}}\), \({\boldsymbol{ y}}\), \({\boldsymbol{ z}}\) are unit vectors, \({\boldsymbol{ x}}\cdot {\boldsymbol{ x}}_{a}={\boldsymbol{ y}}\cdot {\boldsymbol{ y}}_{a}={ \boldsymbol{ z}}\cdot {\boldsymbol{ z}}_{a}=0\), and their partial derivatives can be expressed in the basis \(\left \{ {\boldsymbol{ x}},\,{\boldsymbol{ y}},\,{\boldsymbol{ z}}\right \} \) as

$$ {\boldsymbol{ x}}_{a}=\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right ){ \boldsymbol{ y}}+\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ){ \boldsymbol{ z}},\quad {\boldsymbol{ y}}_{a}=\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right ){\boldsymbol{ z}}+\left ({\boldsymbol{ x}}\cdot { \boldsymbol{ y}}_{a}\right ){\boldsymbol{ x}},\quad {\boldsymbol{ z}}_{a}=\left ({ \boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right ){\boldsymbol{ x}}+\left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ){\boldsymbol{ y}}. $$

Hence their dot products can be calculated by

$$ {\boldsymbol{ x}}_{a}\cdot {\boldsymbol{ y}}_{b}=\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ x}}_{a}\right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{b} \right ),\quad {\boldsymbol{ y}}_{a}\cdot {\boldsymbol{ z}}_{b}=\left ({ \boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right )\left ({\boldsymbol{ x}}\cdot { \boldsymbol{ z}}_{b}\right ),\quad {\boldsymbol{ z}}_{a}\cdot {\boldsymbol{ x}}_{b}= \left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right )\left ({\boldsymbol{ y}} \cdot {\boldsymbol{ x}}_{b}\right ), $$

which can be substituted into Eq. (42) to yield that

$$\begin{aligned} &\dot{\boldsymbol{ D}}^{T}-\left ( \frac{\partial {\boldsymbol{\omega }}}{\partial {\boldsymbol{\vartheta }}}\right )^{T} \\ &\quad\! =\! \sum _{a=1}^{3}\!{\left ( \textstyle\begin{array}{c@{\ }c@{\ }c} \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ y}}_{1}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ z}}_{1}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ x}}_{1}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ y}}_{2}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ z}}_{2}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ x}}_{2}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ y}}_{3}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ z}}_{3}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ x}}_{3}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \end{array}\displaystyle \! \right )\!\dot{\vartheta }_{a}}. \end{aligned}$$
(43)

On the other hand, the right-hand side of Eq. (32) can be directly calculated by Eq. (39), which yields

$$\begin{aligned} &{\boldsymbol{ D}}^{T}\widetilde{\boldsymbol{\omega }} \\ &\quad \!=\! \sum _{a=1}^{3}\!{\left ( \textstyle\begin{array}{c@{\ }c@{\ }c} \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1}\right )\left ({\boldsymbol{ y}} \cdot {\boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1}\right )\left ({\boldsymbol{ x}}\cdot { \boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2}\right )\left ({\boldsymbol{ y}} \cdot {\boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2}\right )\left ({\boldsymbol{ x}}\cdot { \boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3}\right )\left ({\boldsymbol{ y}} \cdot {\boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3}\right )\left ({\boldsymbol{ x}}\cdot { \boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}\right ) \end{array}\displaystyle \!\right )\!\dot{\vartheta }_{a}}. \end{aligned}$$
(44)

Since the vectors \({\boldsymbol{ x}}\), \({\boldsymbol{ y}}\), \({\boldsymbol{ z}}\) are perpendicular to each other, that is, \({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}={\boldsymbol{ y}}\cdot {\boldsymbol{ z}}={ \boldsymbol{ z}}\cdot {\boldsymbol{ x}}=0\), their time derivatives indicate that

$$ {\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{a}=-{\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}, \quad {\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{a}=-{\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}, \quad {\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{a}=-{\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}, $$

which can be substituted to Eq. (44), yielding that

$$\begin{aligned} &{\boldsymbol{ D}}^{T}\widetilde{\boldsymbol{\omega }} \\ &\quad =\!\sum _{a=1}^{3}\!\left ( \textstyle\begin{array}{c@{\ }c@{\ }c} \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{1}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{1} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{1}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{1} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{1}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{1} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{2}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{2} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{2}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{2} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{2}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{2} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \\ \left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{3}\right )\left ({\boldsymbol{ x}} \cdot {\boldsymbol{ z}}_{a}\right )-\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ z}}_{3} \right )\left ({\boldsymbol{ x}}\cdot {\boldsymbol{ y}}_{a}\right ), & \left ({ \boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{3}\right )\left ({\boldsymbol{ y}}\cdot { \boldsymbol{ x}}_{a}\right )-\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ x}}_{3} \right )\left ({\boldsymbol{ y}}\cdot {\boldsymbol{ z}}_{a}\right ), & \left ({ \boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{3}\right )\left ({\boldsymbol{ z}}\cdot { \boldsymbol{ y}}_{a}\right )-\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ y}}_{3} \right )\left ({\boldsymbol{ z}}\cdot {\boldsymbol{ x}}_{a}\right ) \end{array}\displaystyle \!\right )\!\dot{\vartheta }_{a}. \end{aligned}$$
(45)

Equalities (43) and (45) are obvious, which can be checked term by term. So Eq. (32) is proved.  □

Moreover, since the three-component parameter \({\boldsymbol{\vartheta }}\) can be arbitrarily chosen, the proof is independent of any specific \({\boldsymbol{\vartheta }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Yang, K. A referenced nodal coordinate formulation. Multibody Syst Dyn 51, 305–342 (2021). https://doi.org/10.1007/s11044-020-09750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09750-0

Keywords

Navigation