Skip to main content
Log in

Dynamics and input–output feedback linearization control of a wheeled mobile cable-driven parallel robot

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In comparison to the conventional parallel robots, cable-driven parallel robots (CDPRs) have generally superior features such as simple production technology, low energy consumption, large workspace, high payload to moving weight ratio, and also low cost. On the other hand, a wheeled mobile robot (WMR) which is capable of covering a vast area can be used when no specific space is designated for the stationary accessories of a robot. In this paper, the integration of a CDPR with a WMR is proposed to overcome some of the issues related to each of these robots. The kinematic equations of the robot are presented. To derive the dynamic equations, Gibbs–Appel (G–A) formulation is used, which in contrary to the Lagrange formulation benefits from advantages of quasi-velocities over generalized coordinates as well as not requiring Lagrange multipliers. The dynamic equations of the two parts are coupled, and the interacting effects are observable from the governing equations. By considering non-holonomic wheels for the robot, internal dynamics appears in the equations. However, based on some conditions, the equations are input–output linearizable via a static feedback. The platform trajectory is designed based on the given end-effector trajectory. The effectiveness of the controller is shown through simulations and experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.spidercam.org.

  2. http://www.skycam.tv.

References

  1. Khosravi, M.A., Taghirad, H.D.: Dynamic analysis and control of cable driven robots with elastic cables. Trans. Can. Soc. Mech. Eng. 35(4), 543–558 (2011)

    Google Scholar 

  2. Hiller, M., Fang, S., Mielczarek, S., Verhoeven, R., Franitza, D.: Design, analysis and realization of tendon-based parallel manipulators. Mech. Mach. Theory 40(4), 429–445 (2005)

    Article  MATH  Google Scholar 

  3. Hu, Y., Zhang, J., Wan, Z., Lin, J.: Design and analysis of a 6-DOF mobile parallel robot with 3 limbs. J. Mech. Sci. Technol. 25(12), 3215–3222 (2011)

    Article  Google Scholar 

  4. Moosavian, S.A.A., Pourreza, A., Alipour, K.: Dynamics and stability of a hybrid serial-parallel mobile robot. Math. Comput. Model. Dyn. Syst. 16(1), 35–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Albus, J., Bostelman, R., Dagalakis, N.: The NIST robocrane. J. Robot. Syst. 10(5), 709–724 (1993)

    Article  Google Scholar 

  6. Alp, A.B., Agrawal, S.K.: Cable suspended robots: design, planning and control. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’02, 2002, pp. 4275–4280 (2002)

    Google Scholar 

  7. Korayem, M., Tourajizadeh, H., Zehfroosh, A., Korayem, A.: Optimal path planning of a cable-suspended robot with moving boundary using optimal feedback linearization approach. Nonlinear Dyn. 78(2), 1515–1543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Korayem, M.H., Taherifar, M., Tourajizadeh, H.: Robotica 33(3), 578–598 (2015). doi:10.1017/S0263574714000472

    Article  Google Scholar 

  9. Bostelman, R., Albus, J., Dagalakis, N., Jacoff, A., Gross, J.: Applications of the NIST RoboCrane. In: Proceedings of the 5th International Symposium on Robotics and Manufacturing, pp. 14–18 (1994)

    Google Scholar 

  10. Oh, S.-R., Ryu, J.-C., Agrawal, S.K.: Dynamics and control of a helicopter carrying a payload using a cable-suspended robot. J. Mech. Des. 128(5), 1113–1121 (2006)

    Article  Google Scholar 

  11. Oh, S.-R., Mankala, K.K., Agrawal, S.K., Albus, J.S.: Dynamic modeling and robust controller design of a two-stage parallel cable robot. Multibody Syst. Dyn. 13(4), 385–399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oh, S.-R., Mankala, K., Agrawal, S.K., Albus, J.S.: A dual-stage planar cable robot: dynamic modeling and design of a robust controller with positive inputs. J. Mech. Des. 127(4), 612–620 (2005)

    Article  MATH  Google Scholar 

  13. Shao, Z.-F., Tang, X., Wang, L.-P., Chen, X.: Dynamic modeling and wind vibration control of the feed support system in FAST. Nonlinear Dyn. 67(2), 965–985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rosati, G., Gallina, P., Masiero, S., Rossi, A.: Design of a new 5 d.o.f. wire-based robot for rehabilitation. In: Proceedings of 9th IEEE International Conference on Rehabilitation Robotics, pp. 430–433 (2005)

    Google Scholar 

  15. Rosati, G., Gallina, P., Masiero, S.: Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 560–569 (2007)

    Article  Google Scholar 

  16. Zi, B., Duan, B.Y., Du, J.L., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)

    Article  Google Scholar 

  17. Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: Proceedings of the 31st IEEE Conference on Decision and Control, 1992, pp. 2643–2648 (1992)

    Google Scholar 

  18. Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, Boston (1999)

    Google Scholar 

  19. Korayem, M., Tourajizadeh, H., Taherifar, M., Khayatzadeh, S., Maddah, M., Imanian, A., Tajik, A.: A novel method for recording the position and orientation of the end effector of a spatial cable-suspended robot and using for closed-loop control. Int. J. Adv. Manuf. Technol. 72(5–8), 739–755 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of INSF under the grant contracts 92-S-3002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Korayem.

Appendices

Appendix A: Kinematic equations of the wheeled mobile CDPR

The vector \({}^{{A}}\mathbf{x}_{{BA}}\) is the relative position of the end-effector with respect to the platform expressed in the platform frame. It can be expressed in terms of absolute positions of the platform \({}^{{N}}\mathbf{x}_{{AN}}\) and the end-effector \({}^{{N}}\mathbf{x}_{{BN}}\) as

$$ {}^{{A}}\mathbf{x}_{{BA}} = {}^{{N}} \mathbf{R}_{{A}}^{{T}} \bigl({}^{{N}} \mathbf{x}_{{BN}} - {}^{{N}}\mathbf{x}_{{AN}} \bigr). $$
(23)

The first derivative of Eq. (23) is as follows:

$$ {}^{{A}}\dot{\mathbf{x}}_{{BA}} = {}^{{N}} \mathbf{R}_{{A}}^{{T}} \bigl({}^{{N}}\dot{\mathbf{x}}_{{BN}} - {}^{{N}}\dot{\mathbf{x}}_{{AN}} \bigr) + {}^{{A}}\bar{\mathbf{x}}_{{BA}}{}^{{A}} \boldsymbol{\omega}_{{AN}} $$
(24)

where \({}^{{A}}\mathbf{x}_{{BA}}\) is dual vector of the anti-symmetric matrix of \({}^{{A}}\bar{\mathbf{x}}_{{BA}}\). The relative vector of the end-effector angular velocity with respect to the platform in the frame attached to the end-effector can be obtained as

$$ {}^{{B}}\boldsymbol{\omega}_{{BA}} = {}^{{B}} \boldsymbol{\omega}_{{BN}} - {}^{{N}}\mathbf{R}_{{B}}^{{T}}{}^{{N}} \mathbf{R}_{{A}}{}^{{A}}\boldsymbol{\omega}_{{AN}}. $$
(25)

By arranging Eqs. (24) and (25) into the more compact form, the inverse kinematic equation of the CDPR part of the robot can be obtained as

$$ \dot{\boldsymbol{\beta}} = \frac{1}{r}\boldsymbol{\varLambda}^{{T}}{}^{{A}} \bar{\mathbf{R}}_{{B}} \bigl[{}^{{A}}\dot{\mathbf{x}}_{{BA}}^{{T}},{}^{{B}}\boldsymbol{\omega}_{{BA}}^{{T}} \bigr]^{{T}} = \frac{1}{r} \boldsymbol{\varLambda}^{{T}}{}^{{A}}\bar{\mathbf{R}}_{{B}}(\mathbf{C}_{{1}} \dot{\mathbf{x}}_{{A}} + \mathbf{C}_{{2}} \dot{\tilde{\mathbf{x}}}_{{B}}) $$
(26)

where

$$\mathbf{C}_{{1}} = \left [ \textstyle\begin{array}{c@{\quad}c} - {}^{{N}}\mathbf{R}_{{A}}^{{T}} & {}^{{A}}\bar{\mathbf{X}}_{{BA}} \\ \mathbf{0}_{{3}} & - {}^{{N}}\mathbf{R}_{{B}}^{{T}}{}^{{N}}\mathbf{R}_{{A}} \end{array}\displaystyle \right ], \quad\quad \mathbf{C}_{{2}} = \left [ \textstyle\begin{array}{c@{\quad}c} {}^{{N}}\mathbf{R}_{{A}}^{{T}} & \mathbf{0}_{{3}} \\ \mathbf{0}_{{3}} & \mathbf{I}_{{3}} \end{array}\displaystyle \right ]. $$

The derivative of Eq. (26) leads to the angular acceleration vector of the output shaft of the CDPR motors

$$\begin{aligned} \begin{aligned} &\ddot{\boldsymbol{\beta}} = \mathbf{C}_{{3}} \ddot{\mathbf{x}}_{{A}} + \mathbf{C}_{{4}} \ddot{\tilde{\mathbf{x}}}_{{B}} + \mathbf{C}_{{5}}, \\ &\mathbf{C}_{{3}} = \frac{1}{r}\boldsymbol{\varLambda}^{{T}}\left [ \textstyle\begin{array}{c@{\quad}c} - {}^{{N}}\mathbf{R}_{{A}}^{{T}} & {}^{{A}}\bar{\mathbf{x}}_{{BA}} \\ \mathbf{0}_{{3}} & - \mathbf{I}_{{3}} \end{array}\displaystyle \right ], \quad\quad \mathbf{C}_{{4}} = \frac{1}{r}\boldsymbol{\varLambda}^{{T}}{}^{{A}}\bar{\mathbf{R}}_{{B}} \mathbf{C}_{{2}},\\ & \mathbf{C}_{{5}} = \frac{1}{r}\boldsymbol{\varLambda}^{{T}}\left [ \textstyle\begin{array}{c} - {}^{{A}}\bar{\mathbf{W}}_{{AN}}^{{2}}{}^{{N}}\mathbf{R}_{{A}}^{{T}}({}^{{N}}\mathbf{x}_{{BN}} - {}^{{N}}\mathbf{x}_{{AN}}) - {}^{{A}}\bar{\mathbf{W}}_{{AN}}({}^{{N}}\mathbf{R}_{{A}}^{{T}}({}^{{N}}\dot{\mathbf{x}}_{{B}} - {}^{{N}}\dot{\mathbf{x}}_{{A}}) + {}^{{A}}\bar{\mathbf{x}}_{{BA}}{}^{{A}}\boldsymbol{\omega}_{{AN}}) \\ - {}^{{A}}\boldsymbol{\omega}_{{AN}} \times {}^{{N}}\mathbf{R}_{{A}}^{{T}}{}^{{N}}\mathbf{R}_{{B}}{}^{{B}}\boldsymbol{\omega}_{{BN}} \end{array}\displaystyle \right ] \\ &\phantom{\mathbf{C}_{{5}} =\,\,}{} + \frac{1}{r}\dot{\boldsymbol{\varLambda}}^{{T}}{}^{{A}} \bar{\mathbf{R}}_{{B}}(\mathbf{C}_{{1}} \dot{\mathbf{x}}_{{A}} + \mathbf{C}_{{2}} \dot{\tilde{\mathbf{x}}}_{{B}}) \end{aligned} \end{aligned}$$
(27)

where \({}^{{A}}\bar{\mathbf{W}}_{{AN}}\) is the anti-symmetric matrix of the dual vector \({}^{{A}}\boldsymbol{\omega}_{{AN}}\). Considering the relation between angular velocity and Euler angle rates, the acceleration vector of the end-effector can be expressed as

$$ \ddot{\tilde{\mathbf{x}}}_{{B}} = \left [ \textstyle\begin{array}{c}^{{B}}\ddot{\mathbf{x}}_{{BN}} \\ {}^{{B}}\dot{\boldsymbol{\omega}}_{{BN}} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c@{\quad}c} \mathbf{I}_{{3}} & \mathbf{0}_{{3}} \\ \mathbf{0}_{{3}} & \mathbf{P}_{{B}} \end{array}\displaystyle \right ]\left [ \textstyle\begin{array}{c}^{{B}}\ddot{\mathbf{x}}_{{BN}} \\ \ddot{\boldsymbol{\varPsi}}_{{B}} \end{array}\displaystyle \right ] + \left [ \textstyle\begin{array}{c} \mathbf{0}_{{3 \times 1}} \\ \dot{\mathbf{P}}_{{B}}\dot{\boldsymbol{\varPsi}}_{{B}} \end{array}\displaystyle \right ] = \mathbf{C}_{{8}}\ddot{\mathbf{x}}_{{B}} + \mathbf{C}_{{9}}. $$
(28)

The derivative of Eq. (1) which is used in dynamic equation derivation can be expressed as

$$ \ddot{\mathbf{x}}_{{A}} = \mathbf{C}_{{6}} \ddot{\boldsymbol{\theta}} + \mathbf{C}_{{7}} \dot{\varphi} \dot{\boldsymbol{\theta}} $$
(29)

where

$$\mathbf{C}_{{7}} = \frac{r_{\mathit{wh}}}{2b}\left [ \textstyle\begin{array}{c@{\quad}c} d\cos \varphi - b\sin \varphi & - d\cos \varphi - b\sin \varphi \\ d\sin \varphi + b\cos \varphi & - d\sin \varphi + b\cos \varphi \\ \mathbf{0}_{{4 \times 1}} & \mathbf{0}_{{4 \times 1}} \end{array}\displaystyle \right ]. $$

Appendix B: Dynamic equations of the wheeled mobile CDPR

In order to derive the equations of motion, the Gibbs function and generalized power are extended in terms of \(\dot{\tilde{\mathbf{x}}}_{{B}}\) and \(\dot{\boldsymbol{\theta}}\) as follows:

$$ \left \{ \textstyle\begin{array}{l} \biggl[ \frac{\partial \ddot{\boldsymbol{\beta}}}{\partial \ddot{\tilde{\mathbf{x}}}_{{B}}} \biggr]^{T} \biggl[ \frac{\partial S_{\beta}}{\partial \ddot{\boldsymbol{\beta}}} \biggr]^{T} + \biggl[ \frac{\partial S_{B}}{\partial \ddot{\tilde{\mathbf{x}}}_{{B}}} \biggr]^{T} = \biggl[ \frac{\partial \dot{\boldsymbol{\beta}}}{\partial \dot{\tilde{\mathbf{x}}}_{{B}}} \biggr]^{T}\boldsymbol{\tau}_{\boldsymbol{\beta}} + [ \mathbf{M}_{{B}} ]g\left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \mathbf{0}_{{1 \times 2}} & g & \mathbf{0}_{{1 \times 3}} \end{array}\displaystyle \right ]^{T} \\ \biggl[ \frac{\partial \ddot{\mathbf{x}}_{{A}}}{\partial \ddot{\boldsymbol{\theta}}} \biggr]^{T} \biggl[ \frac{\partial S_{A}}{\partial \ddot{\mathbf{x}}_{{A}}} \biggr]^{T} + \biggl[ \frac{\partial \ddot{\mathbf{x}}_{{A}}}{\partial \ddot{\boldsymbol{\theta}}} \biggr]^{T} \biggl[ \frac{\partial S_{\beta}}{ \partial \ddot{\mathbf{x}}_{{A}}} \biggr]^{T} + \mathbf{I}_{{w}} \ddot{\boldsymbol{\theta}} = \biggl[ \frac{\partial \dot{\mathbf{x}}_{{A}}}{\partial \dot{\boldsymbol{\theta}}} \biggr]^{T} \biggl[ \frac{\partial \dot{\boldsymbol{\beta}}}{\partial \dot{\mathbf{x}}_{{A}}} \biggr]^{T}\boldsymbol{\tau}_{\boldsymbol{\beta}} + \boldsymbol{\tau}_{\boldsymbol{\theta}} .\end{array}\displaystyle \right . $$
(30)

By substituting the kinematic equations (1), (3), (27)–(29), and the dynamic equations of (6) and (7) into Eq. (30), the combined dynamic equations of the end-effector and platform can be obtained as

$$ \mathbf{M}\left [ \textstyle\begin{array}{c} \ddot{\mathbf{x}}_{{B}} \\ \ddot{\boldsymbol{\theta}} \end{array}\displaystyle \right ] + \mathbf{C} + \mathbf{G} = \mathbf{F} \boldsymbol{\tau} $$
(31)

where

$$\begin{aligned} & \mathbf{M} = \left [ \textstyle\begin{array}{c@{\quad}c} \mathbf{C}_{{8}}^{{T}} ( \mathbf{C}_{{4}}^{{T}}\mathbf{I}_{{m}}\mathbf{C}_{{4}} + [ \mathbf{M}_{{B}} ] )\mathbf{C}_{{8}} & \mathbf{C}_{{8}}^{{T}} ( \mathbf{C}_{{4}}^{{T}}\mathbf{I}_{{m}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}}) \mathbf{C}_{{6}} ) \\ ( \mathbf{C}_{{8}}^{{T}} ( \mathbf{C}_{{4}}^{{T}}\mathbf{I}_{{m}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}}) \mathbf{C}_{{6}} ) )^{{T}} & \mathbf{C}_{{6}}^{{T}} [ \mathbf{M}_{{A}} ]\mathbf{C}_{{6}} + \mathbf{C}_{{6}}^{{T}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}})^{{T}}\mathbf{I}_{{m}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}})\mathbf{C}_{{6}} + \mathbf{I}_{{w}} \end{array}\displaystyle \right ], \\ &\mathbf{C} = \left [ \textstyle\begin{array}{c} \mathbf{C}_{{8}}^{{T}} ( ( \mathbf{C}_{{4}}^{{T}}\mathbf{I}_{{m}}\mathbf{C}_{{4}} + [ \mathbf{M}_{{B}} ] )\mathbf{C}_{{9}} + \mathbf{C}_{{4}}^{{T}}\mathbf{I}_{{m}} ( (\mathbf{C}_{{3}} + \mathbf{C}_{{10}}) \mathbf{C}_{{7}}\dot{\varphi} \dot{\boldsymbol{\theta}} + \mathbf{C}_{{5}} ) ) \\ ( \mathbf{C}_{{6}}^{{T}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}})^{{T}}\mathbf{I}_{{m}}\mathbf{C}_{{4}} )\mathbf{C}_{{9}} + \mathbf{C}_{{6}}^{{T}} [ \mathbf{M}_{{A}} ]\mathbf{C}_{{7}}\dot{\varphi} \dot{\boldsymbol{\theta}} + \mathbf{C}_{{6}}^{{T}}(\mathbf{C}_{{3}} + \mathbf{C}_{{10}})^{{T}}\mathbf{I}_{{m}} ( (\mathbf{C}_{{3}} + \mathbf{C}_{{10}}) \mathbf{C}_{{7}}\dot{\varphi} \dot{\boldsymbol{\theta}} + \mathbf{C}_{{5}} ) \end{array}\displaystyle \right ] \\ &\phantom{\mathbf{C} =\,\,}{}+ \left [ \textstyle\begin{array}{c} \left [ \textstyle\begin{array}{c} \mathbf{0}_{{3 \times 1}} \\ \mathbf{P}_{{BN}}^{{T}} ( \mathbf{P}_{{BN}}\dot{\boldsymbol{\varPsi}}_{{BN}} \times \mathbf{I}_{{B}}\mathbf{P}_{{BN}}\dot{\boldsymbol{\varPsi}}_{{BN}} ) \end{array}\displaystyle \right ] \\ \mathbf{C}_{{6}}^{{T}}\left [ \textstyle\begin{array}{c} \mathbf{0}_{{3 \times 1}} \\ \mathbf{P}_{{AN}}\dot{\boldsymbol{\varPsi}}_{{AN}} \times \mathbf{I}_{{A}}\mathbf{P}_{{AN}}\dot{\boldsymbol{\varPsi}}_{{AN}} \end{array}\displaystyle \right ] \end{array}\displaystyle \right ], \\ &\mathbf{G} = [ \mathbf{M}_{{B}} ]\left [ \textstyle\begin{array}{c} \mathbf{0}_{{2 \times 1}} \\ - g \\ \mathbf{0}_{{5 \times 1}} \end{array}\displaystyle \right ],\quad\quad \mathbf{F} = \left [ \textstyle\begin{array}{c@{\quad}c} \frac{1}{r}\mathbf{C}_{{8}}^{{T}} \mathbf{C}_{{2}}^{{T}}{}^{{A}}\bar{\mathbf{R}}_{{B}}^{{T}}\boldsymbol{\varLambda} & \mathbf{0}_{{2}} \\ \frac{1}{r}\mathbf{C}_{{6}}^{{T}}\mathbf{C}_{{1}}^{{T}}{}^{{A}}\bar{\mathbf{R}}_{{B}}^{{T}}\boldsymbol{\varLambda} & \mathbf{I}_{{2}} \end{array}\displaystyle \right ], \quad\quad \boldsymbol{\tau} = \left [ \textstyle\begin{array}{c} \boldsymbol{\tau}_{\boldsymbol{\beta}} \\ \boldsymbol{\tau}_{\boldsymbol{\theta}} \end{array}\displaystyle \right ]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korayem, M.H., Yousefzadeh, M. & Manteghi, S. Dynamics and input–output feedback linearization control of a wheeled mobile cable-driven parallel robot. Multibody Syst Dyn 40, 55–73 (2017). https://doi.org/10.1007/s11044-016-9543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9543-6

Keywords

Navigation