Skip to main content
Log in

Deduction method of the overall transfer equation of linear controlled multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The transfer matrix method for multibody systems (MSTMM), which is a highly efficient and novel approach for multibody system dynamics, was proposed and perfected in the past 20 years. The deduction of the overall transfer equation of the system is one of the key techniques in MSTMM. The topology figure of the dynamics model of multibody systems is a novel pictorial expression to describe the relationship among the state vectors of connection points of different elements in MSTMM. In this paper, the block diagram in control theory is introduced and incorporated into the topology figure of the dynamics model to represent the connection relationship between different mechanical elements in the system as well as the control relations. Meanwhile, the transfer equations of the controlled element, control subsystem and the overall transfer equation of the linear controlled multibody systems are deduced. The proposed method greatly reduces the efforts to study the linear controlled multibody systems since the procedures are stylized. Two numerical examples are given to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

  2. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  3. Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill, New York (1983)

    Google Scholar 

  4. Geradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  5. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Mech. Eng. 79, 444–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. (2015). doi:10.1007/s11044-014-9439-2

    MathSciNet  MATH  Google Scholar 

  7. Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill, New York (1963)

    Google Scholar 

  8. Eshleman, R.L.: Critical speeds and response of flexible rotor systems. In: Flexible Rotor–Bearing System Dynamics, vol. 1. ASME, New York (1972)

    Google Scholar 

  9. Dokanish, M.A.: A new approach for plate vibration: combination of transfer matrix and finite element technique. J. Mech. Des. 94, 526–530 (1972)

    Google Scholar 

  10. Horner, G.C., Pilkey, W.D.: The Riccati transfer matrix method. J. Mech. Des. 1, 297–302 (1978)

    Google Scholar 

  11. Kumar, A.S., Sankar, T.S.: A new transfer matrix method for response analysis of large dynamics systems. Comput. Struct. 23, 545–552 (1986)

    Article  MATH  Google Scholar 

  12. Rui, X.T., Yun, L.F., Lu, Y.Q., et al.: Transfer Matrix Method for Multibody System and Its Application. Science Press, Beijing (2008)

    MATH  Google Scholar 

  13. Rui, X.T.: Launch Dynamics of Multibody System. National Defense Industry Press, Beijing (1995)

    Google Scholar 

  14. Rui, X.T., Wang, G.P., Lu, Y.Q.: Transfer matrix method for linear multibody system. Multibody Syst. Dyn. 19, 179–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rui, X.T., Yun, L.F., Tang, J.J., et al.: Transfer matrix method for 2-dimension system. In: Proceedings of the International Conference on Mechanical Engineering and Mechanics, pp. 93–99. Science Press, New York (2005)

    Google Scholar 

  16. Bestle, D., Abbas, K.L., Rui, X.T.: Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems. Multibody Syst. Dyn. 32, 429–444 (2014)

    Article  Google Scholar 

  17. Rui, X.T., He, B., Lu, Y.Q., et al.: Discrete time transfer matrix method for multibody system dynamics. Multibody Syst. Dyn. 14, 317–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rui, X.T., He, B., Rong, B., et al.: Discrete time transfer matrix method for multi-rigid–flexible-body system moving in plane. J. Multi-Body Dyn. 223, 23–42 (2009)

    Google Scholar 

  19. Rui, X.T., Zhang, J.S.: Automatical transfer matrix method of multibody system. In: The 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany (2012)

    Google Scholar 

  20. Rui, X.T., Zhang, J.S., Zhou, Q.B.: Automatic deduction theorem of overall transfer equation of multibody system. Adv. Mech. Eng. (2014). doi:10.1155/2014/378047

    Google Scholar 

  21. Rui, X.T., Bestle, D., Zhang, J.S.: A new form of the transfer matrix method for multibody systems. In: ECCOMAS Thematic Conference on Multibody Dynamics, Zagreb, Croatia (2013)

    Google Scholar 

  22. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Xi’an Jiaotong University Press, Xi’an (2011)

    MATH  Google Scholar 

  23. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 6th edn. Publishing House of Electronic Industry, Beijing (2013)

    MATH  Google Scholar 

  24. Ogata, K.: Modern Control Engineering, 5th edn. Publishing House of Electronic Industry, Beijing (2011)

    MATH  Google Scholar 

  25. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–623 (2003)

    Article  Google Scholar 

  26. Bestle, D., Rui, X.T.: Application of the transfer matrix method to control problems. In: ECCOMAS Thematic Conference on Multibody Dynamics, Zagreb, Croatia (2013)

    Google Scholar 

  27. Book, W., Maizza-Neto, O., Whitney, D.: Feedback control of two beam, two joint systems with distributed flexibility. J. Dyn. Syst. Meas. Control 97, 424–431 (1975)

    Article  Google Scholar 

  28. Book, W., Majette, M.: Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques. J. Dyn. Syst. Meas. Control 105, 245–254 (1983)

    Article  MATH  Google Scholar 

  29. Hung, S.C.C., Weng, C.I.: Modal analysis of controlled multilink systems with flexible links and joints. J. Guid. Control Dyn. 15, 634–641 (1992)

    Article  MATH  Google Scholar 

  30. Yang, F.F., Rui, X.T., Zhan, Z.H.: The transfer matrix method of controlled multibody system with branch. J. Dyn. Control 6, 213–218 (2008)

    Google Scholar 

  31. Lu, W.J., Rui, X.T., Yun, L.F., et al.: Transfer matrix method for linear controlled multibody system. J. Vib. Shock 25, 24–31 (2006)

    Google Scholar 

  32. Krauss, R.W., Book, W.J.: Transfer matrix modeling of systems with noncollocated feedback. J. Dyn. Syst. Meas. Control (2010). doi:10.1115/1.4002476

    Google Scholar 

  33. Krauss, R.W.: Infinite-dimensional pole-optimization control design for flexible structures using the transfer matrix method. J. Comput. Nonlinear Dyn. (2014). doi:10.1115/1.4025352

    Google Scholar 

  34. Hendy, H., Rui, X.T., Zhou, Q.B., et al.: Controller parameters tuning based on transfer matrix method for multibody systems. Adv. Mech. Eng. (2014). doi:10.1155/2014/957684

    Google Scholar 

  35. Hrovat, D.: Survey of advanced suspension developments and related optimal control applications. Automatica 33, 1781–1817 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, B.J., Calise, A.J., Craig, J.I.: Adaptive output feedback control of a flexible base manipulator. J. Guid. Control Dyn. 30, 1068–1080 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Prof. Dieter Bestle in Brandenburg University of Technology Cottbus and Prof. Laith K. Abbas in Nanjing University of Science and Technology for their important discussions. Indebted appreciation should also be given to Associate Prof. Ryan Krauss in Southern Illinois University for providing the dynamics parameters in Table 2. The research was supported by the Research Fund for the Doctoral Program of Higher Education of China (20113219110025), the Research Innovation Program 2013 for Graduates in Common Universities of Jiangsu Province (CXLX13_203), and National Natural Science Foundation of Country (Grant No. 61304137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoting Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Rui, X., Tao, Y. et al. Deduction method of the overall transfer equation of linear controlled multibody systems. Multibody Syst Dyn 38, 263–295 (2016). https://doi.org/10.1007/s11044-015-9487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9487-2

Keywords

Navigation