Skip to main content

Advertisement

Log in

Dynamic considerations of heel-strike impact in human gait

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Based on the impulsive-dynamics formulation, this article presents the analysis of different strategies to regulate the energy dissipation at the heel-strike event in the context of human locomotion. For this purpose, a seven-link 2D human-like multibody model based on anthropometric data is used. The model captures the most relevant dynamic and energetic aspects of the heel-strike event in the sagittal plane. The pre-impact mechanical state of the system, around which the analysis of the heel impact contribution to energy dissipation is performed, is defined based on published data. In the context of the proposed impulsive-dynamics framework, different realistic strategies that the subject can apply to modify the impact dynamics are proposed and analyzed, namely, the trailing ankle push-off, the torso configuration and the degree of joint blocking in the colliding leg. Detailed numerical analysis and discussions are presented to quantify the effects of the mentioned strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Time integral of the constraint forces during the impact.

  2. The sensitivity to the trailing leg velocities found at the impulsive event is very small.

  3. For scleronomic constraints, b +=0.

  4. The presence of this unilateral constraint implies a “complementarity problem”. We deal with this via looking for two different solutions, one “with” and the other “without” this constraint enforced. Then, we choose the physically meaningful one for which \(\mathbf {v}(\mathit{MH}^{L}) \cdot \mathbf {e}_{y} =0 \mbox{ and } \bar{\lambda} > 0\) or \(\mathbf {v}(\mathit{MH}^{L}) \cdot \mathbf {e}_{y} > 0 \mbox{ and } \bar{\lambda}=0\) must be satisfied.

  5. Note that, after the heel strike event, the whole foot will eventually collide with the ground, and then the rotating energy will get mostly dissipated. This second collision mechanism is not analyzed in this work.

References

  1. Mochon, S., McMahon, T.A.: Ballistic walking. J. Biomech. 13, 49–57 (1980)

    Article  Google Scholar 

  2. Mochon, S., McMahon, T.A.: Ballistic walking: an improved model. Math. Biosci. 52, 241–260 (1981)

    Article  MathSciNet  Google Scholar 

  3. Perry, J., Burnfield, J.M.: Gait Analysis: Normal and Pathological Function, 2nd edn. SLACK Incorporated, Thorofare (2010)

    Google Scholar 

  4. Basmajian, J.V.: The human bicycle. In: Komi, P.V. (ed.) Biomechanics 5A. University Park Press, Baltimore (1976)

    Google Scholar 

  5. Alexander, R.M.: Simple models of human motion. Appl. Mech. Rev. 48, 461–469 (1995)

    Article  Google Scholar 

  6. Hürmüzlü, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching: I and II. Dyn. Stab. Syst. 2(2), 73–112 (1987)

    Article  MATH  Google Scholar 

  7. Hürmüzlü, Y., Moskowitz, G.D.: The role of impact in the stability of bipedal locomotion. Int. J. Dyn. Syst. 1(3), 217–234 (1986)

    Article  MATH  Google Scholar 

  8. Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: Proc. of the IEEE Conf. on Robot. and Automation, pp. 246–251 (1996)

    Chapter  Google Scholar 

  9. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity and scaling. J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  10. Kuo, A.D., Donelan, J.M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev. 33(2), 88–97 (2005)

    Article  Google Scholar 

  11. Kuo, A.D., Donelan, J.M.: Dynamic principles of gait and their clinical implications. Phys. Ther. 90(2), 157–176 (2010)

    Article  Google Scholar 

  12. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439(5), 72–75 (2006)

    Article  Google Scholar 

  13. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  14. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  15. McGeer, T.: Passive walking with knees. In: Proceedings of the IEEE Int. Conference on Robotics and Automation, Los Alamitos, CA, USA, pp. 1640–1645 (1990)

    Chapter  Google Scholar 

  16. Donelan, J.M., Kram, R., Kuo, A.D.: Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35, 117–124 (2002)

    Article  Google Scholar 

  17. Font-Llagunes, J.M., Kövecses, J.: Efficient dynamic walking: design strategies to reduce energetic losses of a compass walker at heel strike. Mech. Based Des. Struct. Mach. 37(3), 259–282 (2009)

    Article  Google Scholar 

  18. Pain, M.T.G., Challis, J.H.: Soft tissue motion during impacts: their potential contributions to energy dissipation. J. Appl. Biomech. 18, 231–242 (2002)

    Google Scholar 

  19. Boyer, K.A., Nigg, B.M.: Muscle activity in the leg is tuned in response to impact force characteristics. J. Biomech. 37(10), 1583–1588 (2004)

    Article  Google Scholar 

  20. Boyer, K.A., Nigg, B.M.: Changes in muscle activity in response to different impact forces affect soft tissue compartment mechanical properties. J. Biomech. Eng. 129, 594–602 (2007)

    Article  Google Scholar 

  21. Lafortune, M.A., Hennig, E.M., Lake, M.J.: Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness. J. Biomech. 29(12), 1523–1529 (1996)

    Article  Google Scholar 

  22. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Jt. Surg. Am. 46, 335–360 (1964)

    Google Scholar 

  23. Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965)

    MATH  Google Scholar 

  24. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  25. Font-Llagunes, J.M., Kövecses, J., Pàmies-Vilà, R., Barjau, A.: Comparison of Impulsive and Compliant Contact Models for Impact Analysis in Biomechanical Multibody Systems. In: Proceedings, 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  26. Font-Llagunes, B.A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012)

    Article  MathSciNet  Google Scholar 

  27. Dumas, R., Chèze, L., Verriest, J.-P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007)

    Article  Google Scholar 

  28. Ros, J., Gil, J., Zabalza, I.: 3D_Mec. An Application to Teach Mechanics. In: Proceedings of ASME, IDETC/CIE2005, Long Beach (CA), USA (2005)

    Google Scholar 

  29. Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram–Part I: general formulation. ASME J. Appl. Mech. 75(6), 061012 (2008)

    Article  Google Scholar 

  30. Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram–Part II: imposition of constraints. ASME J. Appl. Mech. 75(6), 061013 (2008)

    Article  Google Scholar 

  31. Font-Llagunes, J.M., Kövecses, J.: Dynamics and energetics of a class of bipedal walking systems. Mech. Mach. Theory 44(11), 1999–2019 (2009)

    Article  MATH  Google Scholar 

  32. Modarres Najafabadi, S.A.: Dynamics modelling and analysis of impact in multibody systems. Ph.D. Thesis, Department of Mechanical Engineering, McGill University, Montreal QC, Canada (2008)

  33. Kuo, A.D.: Energetics of actively powered locomotion using the simplest walking model. ASME J. Biomech. Eng. 124(2), 113–120 (2002)

    Google Scholar 

Download references

Acknowledgements

Javier Ros gratefully acknowledges the support received from the Spanish Ministry of Education under the “Salvador de Madariaga” fellowship #PR2009-0259 and from McGill University to enjoy a sabbatical research stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros, J., Font-Llagunes, J.M., Plaza, A. et al. Dynamic considerations of heel-strike impact in human gait. Multibody Syst Dyn 35, 215–232 (2015). https://doi.org/10.1007/s11044-015-9460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9460-0

Keywords

Navigation