Skip to main content
Log in

Elasto-thermodiffusive nonlocal responses for a spherical cavity due to memory effect

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The present work is devoted to the derivation of fundamental equations in generalized thermoelastic diffusion theory. The main aim is to establish a size-dependent model with the consideration of spatial nonlocal effects of concentration and strain fields. The heat transport equation for the present problem is considered in the context of Moore–Gibson–Thompson (MGT) generalized thermoelasticity theory involving linear and nonlinear kernel functions in a delayed interval in terms of the memory-dependent derivative. The medium is considered to be one-dimensional having a spherical cavity where the boundary of the cavity is traction-free and is subjected to prescribed thermal and chemical shocks. The Laplace transform technique is incorporated for the solution of the basic equations. For numerical evaluation, the analytical expressions have been inverted in the space-time domain using the method of Zakian. From numerical results, the effects of the nonlocality parameters in the heat transport law and the nonlocality of mass-flux have been discussed. The effect of different kernel functions, the delay time, and the effect of thermodiffusion are also reported. A comparative study between the MGT theory and the hyperbolic Lord–Shulman theory is also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\lambda \), \(\mu\) :

Lame’s constants

\(\alpha _{t}\) :

coefficient of linear thermal expansion

\(\alpha _{c}\) :

coefficient of linear diffusion

\(\beta _{1} = (3\lambda +2\mu )\alpha _{t}\) :

thermal coupling parameter

\(\beta _{2} = (3\lambda +2 \mu ) \alpha _{c}\) :

diffusion coupling parameter

\(k\) :

thermal conductivity

\(k^{\star }\) :

conductivity rate parameter

\(\rho \) :

density

\(c_{E} \) :

specific heat

\(T \) :

absolute temperature

\(T_{0} \) :

reference temperature

\(\sigma _{ij} \) :

stress tensor

\(e_{ij} \) :

strain tensor

\(\textbf{u} \) :

displacement vector

\(\textbf{q }\) :

heat flux vector

\(\eta \) :

flow of diffusing mass vector

\(\delta _{ij} \) :

Kronecker delta

\(\tau \) :

relaxation time for MGT theory

\(\tau _{1} \) :

relaxation time for mass flux

\(\omega \) :

delay time

\(D \) :

diffusion coefficient

\(P \) :

chemical potential

\(C \) :

mass concentration of diffusive material

\(U \) :

internal energy per unit mass

\(F_{i} \) :

body force per unit mass

\(S \) :

entropy per unit mass

\(F \) :

Helmhotz free energy per unit volume

\(\chi _{D} \) :

Phonon mean-free path

\(e_{0}a_{0} \) :

nonlocal parameter

References

  • Abouelregal, A.E., Civalek, Ö., Oztop, H.F.: Higher-order time-differential heat transfer model with three-phase lag including memory-dependent derivatives. Int. Commun. Heat Mass Transf. 128, 105649 (2021)

    Article  Google Scholar 

  • Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull. Tech. Univ. Istanb. 37, 373–385 (1984)

    MathSciNet  MATH  Google Scholar 

  • Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Media 29, 595–613 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo, C.: A form of heat conduction which eliminates the paradox of instantaneous propagation. Comput. Rend. 247, 431–433 (1958)

    MATH  Google Scholar 

  • Chena, W., Ikehata, R.: The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 292, 176–219 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath, L., Bhatta, D.: Integral Transforms and Their Applications. Chapman & Hall, London (2007)

    MATH  Google Scholar 

  • Dell’Oro, F., Lasiecka, I., Pata, V.: The Moore-Gibson-Thompson equation with memory in the critical case. J. Differ. Equ. 261(7), 4188–4222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43(1), 24–35 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Edelen, D.G.B., Green, A.E., Lows, N.: Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • El-Attar, S.I., Hendy, M.H., Ezzat, M.A.: Memory response in elasto-thermoelectric spherical cavity. Coupled Syst. Mech. 9(4), 325–342 (2020)

    Google Scholar 

  • El-Karamany, A.S., Ezzat, M.A.: On the dual-phase-lag thermoelasticity theory. Meccanica (2013). https://doi.org/10.1007/s11012-013-9774-z

    Article  MATH  Google Scholar 

  • El-Karamany, A.S., Ezzat, M.A.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stresses 39(9), 1035–1050 (2016)

    Article  Google Scholar 

  • Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  • Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002). https://doi.org/10.1007/b97697

    Book  MATH  Google Scholar 

  • Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A.C., Speziale, C.G., Kim, B.S.: Crack tip problem in non-local elasticity. J. Mech. Phys. Solids 25, 339–346 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat, M.A., Bary, A.A.: State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47, 618–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat, M.A., El-Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108, 62–69 (2016a)

    Article  Google Scholar 

  • Ezzat, M.A., El-Bary, A.A.: Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int. J. Appl. Electromagn. Mech. 50, 549–567 (2016b)

    Article  Google Scholar 

  • Ezzat, M.A., El-Bary, A.A., Fayik, M.A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mat. Struct. 20, 593–602 (2013)

    Article  Google Scholar 

  • Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mech. Adv. Mat. Struct. (2016). https://doi.org/10.1080/15376494.2016.1196793

    Article  MATH  Google Scholar 

  • Ezzat, M.A., Ezzat, S.M., Alduraibi, N.S.: On size-dependent thermo-viscoelasticity theory for piezoelectric materials. Waves Random Complex Media (2022a). https://doi.org/10.1080/17455030.2022.2043569

    Article  Google Scholar 

  • Ezzat, M.A., Ezzat, S.N., Alkharraz, M.Y.: State-space approach to nonlocal thermo-viscoelastic piezoelectric materials with fractional dual-phase lag heat transfer. Int. J. Numer. Methods Heat Fluid Flow 32(12), 3726–3750 (2022b)

    Article  Google Scholar 

  • Fernández, J.R., Quintanilla, R.: Moore-Gibson-Thompson theory for thermoelastic dielectrics. Appl. Math. Mech. 42, 309–316 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1992)

    MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 252–264 (1995)

    MathSciNet  Google Scholar 

  • Gupta, S., Dutta, R., Das, S.: Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory. J. Ocean Eng. Sci. 8(3), 263–277 (2023). https://doi.org/10.1016/j.joes.2022.01.010

    Article  Google Scholar 

  • Halsted, D.J., Brown, D.E.: Zakian’s technique for inverting Laplace transforms. Chem. Eng. J. 3, 312–313 (1972)

    Article  Google Scholar 

  • Hendy, M.H. El-Attar, S.I. Ezzat, M.A.: Thermoelectric viscoelastic spherical cavity with memory-dependent derivative. Mater. Phys. Mech. 47(2), 170–185 (2021). https://doi.org/10.18149/MPM.4722021_2

    Article  Google Scholar 

  • Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in microbeam resonators based on Moore-Gibson-Thompson generalized thermoelasticity theory. Acta Mech. 231, 3003–3015 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Leong, C.W.Y., Leow, J.W.S., Grunstein, R.R., Naismith, S.L., Teh, J.Z., D’Rozario, A., Saini, B.: A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med. Rev. 62, 101605 (2022)

    Article  Google Scholar 

  • Lord, H., Shulman, Y.: A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  • Monal, S.: Memory response in a magneto-thermoelastic rod with moving heat source based on Eringen’s nonlocal theory under dual-phase lag heat conduction. Int. J. Comput. Methods, 17(9), 1950072 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal, S., Sarkar, N., Sarkar, N.: Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stresses 42(8), 1035–1050 (2019)

    Article  Google Scholar 

  • Mondal, S., Sur, A., Kanoria, M.: Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo-Fabrizio heat transport law. Acta Mech. 230(12), 4367–4384 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal, S., Sur, A., Kanoria, M.: A graded spherical tissue under thermal therapy: the treatment of cancer cells. Waves Random Complex Media 32, 488–507 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Othman, M.I.A., Mondal, S., Sur, A.: Influence of memory-dependent derivative on generalized thermoelastic rotating porous solid via three-phase-lag model. Int. J. Comput. Mater. Sci. Eng. (2023). https://doi.org/10.1142/S2047684123500094

    Article  Google Scholar 

  • Pellicer, M., Quintanilla, R.: On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation. Z. Angew. Math. Phys. 71, 84 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids (2019). https://doi.org/10.1177/1081286519862007

    Article  MathSciNet  MATH  Google Scholar 

  • Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  • Sherief, H.H., Abd El-Latief, A.M.: A one-dimensional fractional order thermoelastic problem for a spherical cavity. Math. Mech. Solids 20(5), 512–521 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sherief, H.H., Ezzat, M.A.: A problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder. J. Eng. Math. 34, 387–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Sherief, H.H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Sur, A.: Wave propagation analysis of porous asphalts on account of memory responses. Mech. Based Des. Struct. Mach. 49(7), 1109–1127 (2021)

    Article  Google Scholar 

  • Sur, A.: Non-local memory dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Media 32, 251–271 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Sur, A.: The memory effect on thermal wave propagation in a moving thin slab. Waves Random Complex Media 32(4), 2014–2030 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Sur, A., Mondal, S.: A generalized thermoelastic problem due to nonlocal effect in presence of mode I crack. J. Therm. Stresses 43(10), 1277–1299 (2020)

    Article  Google Scholar 

  • Sur, A., Mondal, S., Kanoria, M.: Memory response in the vibration of a micro-scale beam due to time-dependent thermal loading. Mech. Based Des. Struct. Mach. 50(4), 1161–1183 (2022)

    Article  Google Scholar 

  • Suzuki, J., Zhou, Y., D’Elia, M., Zayernouri, M.: A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput. Methods Appl. Mech. Eng. 373(1), 113494 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson, P.A.: Compressible-Fluid Dynamics. McGraw-Hill, New York (1972)

    Book  MATH  Google Scholar 

  • Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Watson, J.N.: Theory of Bessel Function, 2nd edn. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  • Zhang, P., He, T.: A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source. Waves Random Complex Media 30, 142–156 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referees for their comments and suggestions on this paper.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Abhik Sur is the sole author of the manuscirpt and has prepared the entire computation and the numerical studies.

Corresponding author

Correspondence to Abhik Sur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, A. Elasto-thermodiffusive nonlocal responses for a spherical cavity due to memory effect. Mech Time-Depend Mater (2023). https://doi.org/10.1007/s11043-023-09626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-023-09626-8

Keywords

Navigation