Skip to main content
Log in

Creep characteristics and time-dependent creep model of tunnel lining structure concrete

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A creep test of concrete with different moisture contents is conducted using the MTS815.02 test system to investigate the creep damage law of concrete with respect to stress and time. The creep properties of concrete under hydration and the relationship between water content and concrete creep deformation are analyzed. The damage due to hydration and stress is considered comprehensively. The concrete creep characteristics and time-dependent creep model of different water contents are established based on rheological basic components. The Levenberg–Marquardt algorithm is used to fit the test data of concrete with different water contents. Furthermore, the correctness and rationality of the creep model are verified. Under the same stress level, the creep curves of different water contents show different creep stages. As the water content increases, creep changes at the same stress level are prone to stable creep and accelerated creep stages. The damage inside the concrete under high water content is significant, and the concrete is susceptible to creep deformation. The high degree of fit between the test data and the model curve reflects the suitability and feasibility of the established creep model to describe the deformation process of concrete creep with different water contents. The model accurately reflects not only the creep characteristics of the attenuation and stable creep stages but also overcomes the shortcomings of the traditional Nishihara model, which has difficulty in describing the accelerated creep. The deterioration law of creep parameters also reflects the damage degree of concrete under different water content conditions to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cui, S.D.: Study on time effect of rock mechanical parameters and unsteady rheological constitutive model. PhD thesis, Beijing Jiaotong University, China (2010)

  • Desayi, P., Nandakumar, N.: A semi-empirical approach to Predict shear strength of ferrocement. Cem. Concr. Compos. 17(3), 207–218 (1995)

    Article  Google Scholar 

  • Docevska, M., Markovski, G., Mark, P.: Experimental investigation on the reversibility of concrete creep under repeating loads. Mater. Struct. 52(4), 83 (2019)

    Article  Google Scholar 

  • Feng, X.W., Wang, W., Wang, R.B.: A rheological creep model of sandstone under water–rock chemical interaction. Rock Soil Mech. 39(9), 3340–3347 (2018)

    Google Scholar 

  • Geng, Y., Zhao, M., Yang, H., Wang, Y.: Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete. Cem. Concr. Compos. 103, 303–317 (2019)

    Article  Google Scholar 

  • He, Z.H., Li, L.Y., Du, S.G.: Creep analysis of concrete containing rice husk ash. Cem. Concr. Compos. 80, 190–199 (2017)

    Article  Google Scholar 

  • Hilaire, A., Benboudjema, F., Darquennes, A.: Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl. Eng. Des. 269, 222–230 (2014)

    Article  Google Scholar 

  • Hou, X., Abid, M., Zheng, W., Hussain, R.R.: Effects of temperature and stress on creep behavior of PP and hybrid fiber reinforced reactive powder concrete. Int. J. Concr. Struct. Mater. 13(1), 45 (2019)

    Article  Google Scholar 

  • Jaoul, O., Tullis, J., Kronenberg, A.: The effect of varying water contents on the creep behavior of Heavitree quartzite. J. Geophys. Res., Solid Earth 89(B6), 4298–4312 (1984)

    Article  Google Scholar 

  • Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 304–335 (1992)

    Article  Google Scholar 

  • Kranz, R.L.: Crack growth and development during creep of Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16(1), 23–35 (1987)

    Article  Google Scholar 

  • Kravcov, A.N., Svoboda, P., Pospíchal, V., Morozov, D.V., Ivanov, P.N.: Assessment of long-term strength of rocks. In: Key Engineering Materials, vol. 755, pp. 62–64 (2017)

    Google Scholar 

  • Lajtai, E.Z., Schmidtke, R.H., Bielus, L.P.: The effect of water on the time-dependent deformation and fracture of a granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 24(4), 247–255 (1987)

    Article  Google Scholar 

  • Li, Q., Liu, M., Lu, Z., Deng, X.: Creep model of high-strength high-performance concrete under cyclic loading. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34(3), 622–629 (2019)

    Article  Google Scholar 

  • Liu, B.G., Cui, S.D.: Improvement of single specimen method for determination of rock strength parameters. China Civ. Eng. J. 44(1), 162–165 (2011)

    Google Scholar 

  • Liu, H.Z., Xie, H.Q., He, J.D., Xiao, M.L., Zhuo, L.: Nonlinear creep damage constitutive model for soft rocks. Mech. Time-Depend. Mater. 21(1), 73–96 (2017)

    Article  Google Scholar 

  • Pignatelli, I., Kumar, A., Alizadeh, R.: A dissolution–precipitation mechanism is at the origin of concrete creep in moist environments. J. Chem. Phys. 145(5), 054701 (2016)

    Article  Google Scholar 

  • Pramthawee, P., Jongpradist, P., Sukkarak, R.: Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam. Comput. Geotech. 91, 104–116 (2017)

    Article  Google Scholar 

  • Sha, Z., Pu, H., Li, M., Cao, L., Liu, D., Ni, H., Lu, J.: Experimental study on the creep characteristics of coal measures sandstone under seepage action. Processes 6(8), 110 (2018)

    Article  Google Scholar 

  • Wei, Y., Guo, W., Liang, S.: Microprestress–solidification theory-based tensile creep modeling of early-age concrete: considering temperature and relative humidity effects. Constr. Build. Mater. 127, 618–626 (2016)

    Article  Google Scholar 

  • Wei, Y., Huang, J., Liang, S.: Measurement and modeling concrete creep considering relative humidity effect. Mech. Time-Depend. Mater. (2019) 1–17, https://doi.org/10.1007/s11043-019-09414-3

    Article  Google Scholar 

  • Wu, S., Chen, X., Zhou, J.: Influence of strain rate and water content on mechanical behavior of dam concrete. Constr. Build. Mater. 36, 448–457 (2012)

    Article  Google Scholar 

  • Wu, F., Liu, C., Sun, W., Zhang, L., Ma, Y.: Mechanical and creep properties of concrete containing apricot shell lightweight aggregate. KSCE J. Civ. Eng. 23(7), 1–10 (2019)

    Article  Google Scholar 

  • Yang, S.Q., Jing, H.W., Cheng, L.: Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng. Geol. 179, 10–23 (2014)

    Article  Google Scholar 

  • Yu, Q.H.: Rheological failure process of rock and finite element analysis. J. Hydraul. Eng. 6(1), 55–61 (1985). (In Chinese)

    Google Scholar 

  • Yu, C.Y., Tang, C.A., Tang, S.B.: Creep damage model with variable parameters and weakness effects by water of soft rock. China Sciencepap. 10(3), 300–304 (2015)

    Google Scholar 

  • Zhang, F., Jia, Y., Bian, H.B.: Modeling the influence of water content on the mechanical behavior of Callovo-Oxfordian argillite. Phys. Chem. Earth Parts A/B/C 65, 79–89 (2013)

    Article  Google Scholar 

  • Zhang, C., Zhu, Z., Zhu, S., He, Z., Zhu, D., Liu, J., Meng, S.: Nonlinear creep damage constitutive model of concrete based on fractional calculus theory. Materials 12(9), 1505 (2019)

    Article  Google Scholar 

  • Zhou, Z., Cai, X., Cao, W.: Influence of water content on mechanical properties of rock in both saturation and drying processes. Rock Mech. Rock Eng. 49(8), 3009–3025 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Viscoelastic strain

The solution process in Eq. (15) is presented as follows. In the one-dimensional stress state, the viscoelastic rheological equation of concrete can be expressed as

$$ \sigma = E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} \varepsilon _{ve} + \eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} \varepsilon '_{ve}. $$
(30)

Equation (30) is transformed to obtain the following equation:

$$ \varepsilon _{ve} + \frac{\eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }\varepsilon '_{ve} = \frac{\sigma }{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }. $$
(31)

This first-order differential equation is nonhomogeneous and linear. Therefore, its general solution must be determined first. To determine its general solution, Eq. (31) can be transformed into the following form:

$$ \varepsilon _{ve} + \frac{\eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }\varepsilon '_{ve} = 0. $$
(32)

Eq. (32) is solved, and the general solution can be obtained as follows:

$$ \varepsilon _{ve} = C_{0}\exp \left \langle - \frac{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }{\eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }t \right \rangle = C_{0}\exp \left ( - \frac{a}{b}t \right ), $$
(33)

where \(C_{0}\) is the integration constant, and \(a\) and \(b\) are the variable parameters.

The variable parameters \(a\) and \(b\) can be expressed as

$$ a = E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} ,\qquad b = \eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} . $$
(34)

According to Eq. (34), the following viscoelastic strain of concrete can be assumed to be expressed as

$$ \varepsilon _{ve} = \gamma \exp \left ( - \frac{a}{b}t \right ), $$
(35)

where \(\gamma \) is the solution variable of the nonhomogeneous differential equation, which is also a function of time.

Equation (35) is subjected to the first-order partial derivative at time \(t\), and the viscoelastic strain rate is obtained as follows:

$$ \varepsilon '_{ve} = \gamma '\exp \left ( - \frac{a}{b}t \right ) - \frac{b}{a}\gamma \exp \left ( - \frac{a}{b}t \right ). $$
(36)

Eqs. (35) and (36) are substituted into Eq. (31) and the following equation is obtained:

$$ \gamma \exp \left ( - \frac{a}{b}t \right ) + \frac{a}{b}\left [ \gamma '\exp \left ( - \frac{a}{b}t \right ) - \frac{b}{a}\gamma \exp \left ( - \frac{a}{b}t \right ) \right ] = \frac{\sigma }{a}. $$
(37)

The variable parameter \(\gamma \) can be expressed as

$$ \gamma = \frac{\sigma }{a}\exp \left ( \frac{a}{b}t \right ) + C_{1}, $$
(38)

where \(C_{1}\) is the integration constant.

Equation (38) is substituted into Eq. (35), and the viscoelastic strain of concrete is obtained as follows:

$$ \varepsilon _{ve} = \left [ \frac{\sigma }{a}\exp \left ( \frac{a}{b}t \right ) + C_{1} \right ]\exp \left ( - \frac{a}{b}t \right ) = \frac{\sigma }{a} + C_{1}\exp \left ( - \frac{a}{b}t \right ). $$
(39)

When \(t = 0\), \(\varepsilon _{ve} = 0\). The integration parameter \(C_{1}\) is expressed as

$$ C_{1} = - \frac{\sigma }{a}. $$
(40)

In summary, the viscoelastic strain of concrete is expressed as

$$ \varepsilon _{ve} = \frac{\sigma }{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }\left \{ 1 \!-\! \exp \left [ - \frac{E_{1}\exp \left \{ - \left [ \alpha _{1}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }{\eta _{1}\exp \left \{ - \left [ \alpha _{2}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }t \right ] \right \} . $$
(41)

Appendix B: Viscoplastic strain

The viscoplastic rheological equation of concrete is expressed as

$$ \sigma = \sigma _{s} + \eta _{2}\exp \left \{ - \left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} \dot{\varepsilon }_{vp}. $$
(42)

Eq. (42) can be transformed into the following form:

$$ \dot{\varepsilon }_{vp} = \frac{\sigma - \sigma _{s}}{\eta _{2}\exp \left \{ - \left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} } = \frac{\sigma - \sigma _{s}}{\eta _{2}}\exp \left \{ - \left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} . $$
(43)

Eq. (43) is integrated to obtain the following viscoplastic strain:

$$ \varepsilon _{vp} = \frac{\sigma - \sigma _{s}}{\eta _{2}\left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]}\exp \left \{ \left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} + C_{2}t, $$
(44)

where \(C_{2}\) is the integration constant.

When \(t = 0\), \(\varepsilon _{vp} = 0\). The integration parameter \(C_{2}\) is expressed as

$$ C_{2} = - \frac{\sigma - \sigma _{s}}{\eta _{2}\left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t}. $$
(45)

Eq. (45) is substituted into Eq. (44) to obtain the following viscoplastic strain of concrete:

$$ \varepsilon _{vp} = \frac{\sigma - \sigma _{s}}{\left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t}\left \langle 1 - \frac{\exp \left \{ \left [ \alpha _{3}\left ( \sigma - \sigma _{A} \right ) + \beta \omega \right ]t \right \} }{\eta _{2}} \right \rangle . $$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, S., Sun, B. et al. Creep characteristics and time-dependent creep model of tunnel lining structure concrete. Mech Time-Depend Mater 25, 365–382 (2021). https://doi.org/10.1007/s11043-020-09449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-020-09449-x

Keywords

Navigation