Skip to main content
Log in

Secured IIoT against trust deficit - A flexi cryptic approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This research allows the secure surveillance approach for the Internet of Things (IoT) methodology to be developed by integrating wireless signalling and image encryption strategy. Since the Cloud Service Telco (CST) is a semi-trusted body in cloud services, user data is encrypted before uploading to a cloud server for data protection from disclosure. The flexibility of encrypted data sharing is essential for cloud storage users. This study investigates the Discrete Wavelet Transform (DWT) technique with modified Huffman compression and Elliptic Curve Cryptography (ECC). It encrypts and decrypts the data and enhances industrial security surveillance in transmission. It uses the wireless network’s next generation (5G or 6G) as uplink Single Carrier Frequency Division Multiple Access (SC-FDMA) strategies via the IoT. This study presented a novel approach to proposing hardware architecture for a secure web camera integrated with the Atmel in the mega AVR family (ATMEGA) microcontroller, suitable for IoT applications. The experimental results confirm the proposed model’s efficacy compared with existing robustness and security analysis algorithms. These systems are also used by implementing industry-standard protocols using IoTs to monitor industrial applications. The proposed framework can also minimise bandwidth, transmission cost, storage space, tracking data, and decisions about abnormal events such as potential fraud and extinguisher detection in surveilling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Yavari A, Jayaraman PP, Georgakopoulos D (2016) Contextualised service delivery in the internet of things: parking recommender for smart cities. In: 2016 IEEE 3Rd world forum on internet of things (WF-iot). IEEE, pp 454–459. https://doi.org/10.1109/WF-IoT.2016.7845479

  2. Tan Ya, Zhang X, Sharif K, Liang C, Zhang Q, Li Y (2018) Covert timing channels for iot over mobile networks. IEEE Wirel Commun 25(6):38–44

    Article  Google Scholar 

  3. Guan Z, Li J, Wu L, Zhang Y, Wu J, Du X (2017) Achieving efficient and secure data acquisition for cloud-supported internet of things in smart grid. IEEE Internet Things J 4(6):1934–1944

    Article  Google Scholar 

  4. Xu LD, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Industr Inf 10(4):2233–2243

    Article  Google Scholar 

  5. Liu H, Liu J, Ma C (2023) Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption. Multimed Tools Appl 82:23899–23914. https://doi.org/10.1007/s11042-022-12069-x

    Article  Google Scholar 

  6. Liu H, Kadir A, Xu C (2020) Cryptanalysis and constructing S-box based on chaotic map and backtracking. Appl Math Comput 376:125153

    MathSciNet  Google Scholar 

  7. Lloret J, Bosch I, Sendra S, Serrano A (2011) A wireless sensor network for vineyard monitoring that uses image processing. Sensors 11(6):6165–6196

    Article  Google Scholar 

  8. Li G, Wu J, Li J, Wang K, Ye T (2018) Service popularity-based smart resources partitioning for fog computing-enabled industrial internet of things. IEEE Trans Industr Inf 14(10):4702–4711

    Article  Google Scholar 

  9. Severino R, Rodrigues J, Alves J, Ferreira LL (2023) Performance assessment and mitigation of timing covert channels over the IEEE 802.15.4. J Sens Actuator Netw 12(4):60. https://doi.org/10.3390/jsan12040060

    Article  Google Scholar 

  10. Alnajim AM, Habib S, Islam M, Thwin SM, Alotaibi F (2023) A comprehensive survey of cybersecurity threats, attacks, and effective countermeasures in Industrial Internet of things. Technologies 11(6):161. https://doi.org/10.3390/technologies11060161

    Article  Google Scholar 

  11. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. IEEE Internet Things J 1(1):22–32

    Article  Google Scholar 

  12. Habib K, Torjusen A, Leister W (2014) A novel authentication framework based on biometric and radio fingerprinting for the iot in ehealth. In: SMART 2014: The Third International Conference on Smart Systems, Devices, and Technologies, pp 32–37

  13. Mehmood I, Sajjad M, Ejaz W, Baik SW (2015) Saliency-directed prioritisation of visual data in wireless surveillance networks. Inform Fusion 24:16–30

    Article  Google Scholar 

  14. Muhammad K, Hamza R, Ahmad J, Lloret J, Wang H, Baik SW (2018) Secure surveillance framework for iot systems using probabilistic image encryption. IEEE Trans Industr Inf 14(8):3679–3689

    Article  Google Scholar 

  15. Innovative method leads to smaller, cheaper IoT. https://phys.org/news/2018-11-method-smaller-cheaper-iot-sensors.html

  16. Bobbio A, Campanile L, Gribaudo M, Iacono M, Marulli F, Mastroianni M (2023) A cyber warfare perspective on risks related to health iot devices and contact tracing. Neural Comput & Applic 35:13823–13837. https://doi.org/10.1007/s00521-021-06720-1

    Article  Google Scholar 

  17. Johnson M, Ishwar P, Prabhakaran V, Schonberg D, Ramchandran K (2004) On compressing encrypted data. IEEE Trans Signal Process 52(10):2992–3006

    Article  MathSciNet  Google Scholar 

  18. Castiglione A, Choo KKR, Nappi M, Ricciardi S (2017) Context aware ubiquitous biometrics in edge of military things. IEEE Cloud Comput 4(6):16–20

    Article  Google Scholar 

  19. Azmoodeh A, Dehghantanha A, Choo KKR (2018) Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans Sustain Comput 4(1):88–95

    Article  Google Scholar 

  20. Sadeghi AR, Wachsmann C, Waidner M (2015) Security and privacy challenges in industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, pp 1–6

  21. Esposito C, Castiglione A, Martini B, Choo KKR (2016) Cloud manufacturing: security, privacy, and forensic concerns. IEEE Cloud Comput 3(4):16–22

    Article  Google Scholar 

  22. Choo KKR, Gritzalis S, Park JH (2018) Cryptographic solutions for industrial internet-of-things: research challenges and opportunities. IEEE Trans Industr Inf 14(8):3567–3569

    Article  Google Scholar 

  23. Li S, Da Xu L, Zhao S (2018) 5 g internet of things: a survey. J Industrial Inform Integr 10:1–9

    Google Scholar 

  24. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  Google Scholar 

  25. Evangelos AK, Nikolaos DT, Anthony CB (2011) Integrating rfids and smart objects into a unified internet of things architecture. Adv Internet Things 1:5–12. https://doi.org/10.4236/ait.2011.11002

    Article  Google Scholar 

  26. Roy C, Misra S, Pal S (2020) Blockchain-enabled safety-as-a-service for industrial iot applications. IEEE Internet Things Magazine 3(2):19–23

    Article  Google Scholar 

  27. Gavrilă C, Popescu V, Alexandru M, Murroni M, Sacchi C (2020) An sdr- based satellite gateway for internet of remote things (iort) applications. IEEE Access 8:115423–115436

    Article  Google Scholar 

  28. Awaisi KS, Hussain S, Ahmed M, Khan AA, Ahmed G (2020) Leveraging iot and fog computing in healthcare systems. IEEE Internet Things Magazine 3(2):52–56

    Article  Google Scholar 

  29. Elhoseny M, Ramírez-González G, Abu-Elnasr OM, Shawkat SA, Arunkumar N, Farouk A (2018) Secure medical data transmission model for iot-based healthcare systems. IEEE Access 6:20596–20608

    Article  Google Scholar 

  30. Singh A, Chawla N, Ko JH, Kar M, Mukhopadhyay S (2018) Energy efficient and side-channel secure cryptographic hardware for iot-edge nodes. IEEE Internet Things J 6(1):421–434

    Article  Google Scholar 

  31. Lu Y (2017) Industry 4.0: a survey on technologies, applications and open re- search issues. J Ind Info Integr 6:1–10

    Google Scholar 

  32. Cheng J, Chen W, Tao F, Lin CL (2018) Industrial Iot in 5 g environment towards smart manufacturing. J Ind Inf Integr 10:10–19. https://doi.org/10.1016/j.jii.2018.04.001

    Article  Google Scholar 

  33. Yuehong Y, Zeng Y, Chen X, Fan Y (2016) The internet of things in healthcare: an overview. J Ind Inf Integr 1:3–13

    Google Scholar 

  34. Padmapriya V, Thenmozhi K, Praveenkumar P, Amirtharajan R (2020) Ecc joins first time with SC_FDMA for mission security. Multimed Tools Appl 79(25):17945–17967

    Article  Google Scholar 

  35. Li J, Chen L, Cai W, Xiao J, Zhu J, Hu Y, Wen K (2022) Holographic encryption algorithm based on bit-plane decomposition and hyperchaotic lorenz system. Opt Laser Technol 152:108127. https://doi.org/10.1016/j.optlastec.2022.108127

    Article  Google Scholar 

  36. Padmapriya V, Thenmozhi K, Praveenkumar P, Amirtharajan R (2022) Misconstrued voice on SC-FDMA for secured comprehension a cooperative influence of DWT and ECC. Multimed Tools Appl 81:7201–7217. https://doi.org/10.1007/s11042-022-11996-z

    Article  Google Scholar 

  37. Sujihelen L, Jayakumar C (2018) Inclusive elliptical curve cryptography (iecc) for wireless sensor network efficient operations. Wireless Pers Commun 99(2):893–914

    Article  Google Scholar 

  38. Britto J, Roja MM (2017) Gaussian noise analysis in elliptic curve encrypted images. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), IEEE, pp 791–794

  39. El-Latif AAA, Li L, Niu X (2014) A new image encryption scheme based on cyclic elliptic curve and chaotic system. Multimed Tools Appl 70(3):1559–1584

    Article  Google Scholar 

  40. Khanzadi H, Eshghi M, Borujeni SE (2014) Image encryption using random bit sequence based on chaotic maps. Arab J Sci Eng 39(2):1039–1047

    Article  Google Scholar 

  41. Li L, Abd El-Latif AA, Niu X (2012) Elliptic curve elgamal based homomorphic image encryption scheme for sharing secret images. Sig Process 92(4):1069–1078

    Article  Google Scholar 

  42. Dosselmann R, Yang XD (2011) A comprehensive assessment of the structural similarity index. Signal Image Video Process 5(1):81–91

    Article  Google Scholar 

  43. Rahadjo B et al (2017) Design and implementation stegocrypto based on elgamal elliptic curve. In: 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), IEEE, pp 95–99

  44. Lohachab A et al (2019) Ecc based inter-device authentication and authorisation scheme using MQTT for iot networks. J Inform Secur Appl 46:1–12

    Google Scholar 

  45. Tawalbeh L, Mowafi M, Aljoby W (2013) Use of elliptic curve cryptography for multimedia encryption. IET Inf Secur 7(2):67–74

    Article  Google Scholar 

  46. Norouzi B, Seyedzadeh SM, Mirzakuchaki S, Mosavi MR (2015) A novel image encryption based on row-column, masking and main diffusion processes with hyper chaos. Multimedia Tools Appl 74(3):781–811

    Article  Google Scholar 

  47. Sokouti M, Sokouti B (2018) A prisma-compliant systematic review and analysis on color image encryption using dna properties. Comput Sci Rev 29:14–20

    Article  Google Scholar 

  48. Wang S, Peng Q, Du B (2022) Chaotic color image encryption based on 4d chaotic maps and dna sequence. Opt Laser Technol 148:107753

    Article  Google Scholar 

  49. Alarood AA, Alsolami E, Al-Khasawneh MA, Ababneh N, Elmedany W (2022) Ies: Hyper-chaotic plain image encryption scheme using improved shuffled confusion-diffusion. Ain Shams Eng J 13(3):101583

    Article  Google Scholar 

  50. Duan CF, Zhou J, Gong LH, Wu JY, Zhou NR (2022) New color image encryption scheme based on multi-parameter fractional discretechebyshev moments and nonlinear fractal permutation method. Opt Lasers Eng 150:106881

    Article  Google Scholar 

  51. Zhou W, Wang X, Wang M, Li D (2022) A new combination chaotic system and its application in a new bit-level image encryption scheme. Opt Lasers Eng 149:106782

    Article  Google Scholar 

  52. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  53. Mittal A, Moorthy AK, Bovik AC (2011) Blind/referenceless image spatial quality evaluator. In: 2011 Conference Record of the Forty Fifth Asilo- mar Conference on Signals, Systems and Computers (ASILOMAR), IEEE, pp 723–727

  54. Mittal A, Soundararajan R, Bovik AC (2012) Making a completely blind image quality analyser. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  55. Sridevi A, Sivaraman R, Balasubramaniam V, Sreenithi, Siva J, Thanikaiselvan V, Rengarajan A (2022) On chaos based duo confusion duo diffusion for colour images. Multimedia Tools Appl 81(12):16987–17014. https://doi.org/10.1007/s11042-022-12471-5

    Article  Google Scholar 

  56. Zhang F, Zhang X, Cao M, Ma F, Li Z (2021) Characteristic analysis of 2D lag-Complex Logistic Map and its application in image encryption. IEEE Multimedia 28(4):96–106. https://doi.org/10.1109/MMUL.2021.3080579

    Article  Google Scholar 

  57. Lone MA, Qureshi S (2022) RGB image encryption based on symmetric keys using arnold transform, 3D chaotic map and affine hill cipher. Optik 260:168880. https://doi.org/10.1016/j.ijleo.2022.168880

    Article  Google Scholar 

  58. Teng L, Wang X, Xian Y (2022) Image encryption algorithm based on a 2D-CLSS hyperchaotic map using simultaneous permutation and diffusion. Inf Sci 605:71–85. https://doi.org/10.1016/j.ins.2022.05.032

    Article  Google Scholar 

  59. Ye G, Wu H, Liu M, Shi Y (2022) Image encryption scheme based on blind signature and an improved lorenz system. Expert Syst Appl 205:117709. https://doi.org/10.1016/j.eswa.2022.117709

    Article  Google Scholar 

  60. Aparna H, Bhumijaa B, Santhiyadevi R, Vaishanavi K, Sathanarayanan M, Rengarajan A, Abd El-Latif AA (2021) Double layered fridrich structure to conserve medical data privacy using quantum cryptosystem. J Inform Secur Appl 63:102972. https://doi.org/10.1016/j.jisa.2021.102972

    Article  Google Scholar 

  61. Padmapriya VM, Thenmozhi K, Avila J, Amirtharajan R, Praveenkumar P (2020) Real time authenticated spectrum access and encrypted image transmission via cloud enabled fusion centre. Wirel Personal Commun 115(3):2127–2148

    Article  Google Scholar 

  62. Manikandan V, Amirtharajan R (2022) A simple embed over encryption scheme for DICOM images using Bülban Map. Med Biol Eng Comput 60(3):701–717

    Article  Google Scholar 

  63. Zhang Y, Xie H, Sun J, Zhang H (2022) An efficient multi-level encryption scheme for stereoscopic medical images based on coupled chaotic system and otsu threshold segmentation. Comput Biol Med 146:105542. https://doi.org/10.1016/j.compbiomed.2022.105542

    Article  Google Scholar 

  64. https://www.youtube.com/watch?v=6bfY9JXOppI. Accessed on 06/01/2023

  65. https://projecthub.arduino.cc/. Accessed on 06/01/2023

  66. Mahalingam H, Veeramalai T, Menon AR, Amirtharajan SS (2023) Dual-domain image encryption in Unsecure Medium—A Secure Communication Perspective. Mathematics 11:457. https://doi.org/10.3390/math11020457

    Article  Google Scholar 

  67. Zhang X, Wang X (2019) Multiple-image encryption algorithm based on DNA encoding and chaotic system. Multimed Tools Appl 78:7841–7869. https://doi.org/10.1007/s11042-018-6496-1

    Article  Google Scholar 

  68. Zhu S, Deng X, Zhang W, Zhu C (2023) Image encryption Scheme based on newly designed chaotic map and parallel DNA coding. Mathematics 11:231. https://doi.org/10.3390/math11010231

    Article  Google Scholar 

  69. Song X, Chen G, Abd El-Latif AA (2022) Quantum Color image encryption Scheme Based on Geometric Transformation and Intensity Channel Diffusion. Mathematics 10:3038. https://doi.org/10.3390/math10173038

    Article  Google Scholar 

  70. Zhong H, Li G, Xu X, Song X (2022) Image encryption Algorithm based on a novel wide-range Discrete Hyperchaotic Map. Mathematics 10:2583. https://doi.org/10.3390/math10152583

    Article  Google Scholar 

  71. Lai Q, Liu Y, Yang L (2023) Image encryption using memristive hyperchaos. Appl Intell. https://doi.org/10.1007/s10489-023-04727-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding

Institutional Fund Projects under grant no. IFPIP: 974-144-1443. Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirtharajan Rengarajan.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by authors.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmapriya, V.M., Thenmozhi, K., Hemalatha, M. et al. Secured IIoT against trust deficit - A flexi cryptic approach. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18962-x

Keywords

Navigation