Skip to main content
Log in

Estimation towards the impact of contact lens in iris recognition: A study

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Biometrics systems have gotten much press recently because of their use in various fields. Among all biometric approaches, automated personal identification authentication systems based on iris recognition are regarded as the most trustworthy. It is employed in various access control and border security applications because of its high accuracy and uniqueness. Though iris patterns are unique, extrinsic factors such as lighting, camera-eye angle, and sensor interoperability can influence them. So, Iris recognition requires sufficient iris texture visibility to carry out a trustworthy matching. When a textured contact lens covers the iris, a presentation attack or misleading non-match is recorded. However, there are situations when one desires to increase the likelihood of a match even while the iris texture is partially or entirely hidden, such as when a disobedient subject deliberately wears textured contact lenses to mask their identity. So in this way, contact lenses can complicate iris biometrics by obscuring iris patterns and altering inter- and intra-class distributions. This study is aimed to observe the influence of contact lenses on the current technologies in iris recognition systems and highlights their performance. Furthermore, it examines advanced iris recognition systems that employ machine/deep learning-based methodologies and their challenges. All the data is gathered from various online resources, including journals, conferences, survey articles, and many more, and depicts the current state of the iris recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hollingsworth K, Bowyer KW, Flynn PJ (2009) Pupil dilation degrades iris biometric performance. Comput Vis Image Underst 113(1):150–157. https://doi.org/10.1016/j.cviu.2008.08.001

    Article  Google Scholar 

  2. Bowyer KW, Baker SE, Hentz A, Hollingsworth K, Peters T, Flynn PJ (2009) Factors that degrade the match distribution in iris biometrics. Identity Inf Soc 2(3):327–343. https://doi.org/10.1007/s12394-009-0037-z

    Article  Google Scholar 

  3. Arora SS, Vatsa M, Singh R, Jain A (2012) On iris camera interoperability. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS). IEEE, pp 346–352

    Chapter  Google Scholar 

  4. “Contact Lenses Market Size & Share | Analysis Report [2028].” https://www.fortunebusinessinsights.com/industry-reports/contact-lenses-market-101775 (accessed Feb. 27, 2022)

  5. Lim CHL, Stapleton F, Mehta JS (2019) A review of cosmetic contact lens infections. Eye 33(1):78–86. https://doi.org/10.1038/s41433-018-0257-2

    Article  PubMed  Google Scholar 

  6. Ahmed HM, Taha MA (2021) A Brief Survey on Modern Iris Feature Extraction Methods. Eng Technol J 39(1):123–129. https://doi.org/10.30684/etj.v39i1a.1680

    Article  Google Scholar 

  7. Oluwashina O, Oyeniyi J (2020) Iris Recognition System : Literature Survey and Technical Overview. Int J Eng Artif Intell 1(3):34–43

    Google Scholar 

  8. Rahim Z, Kadhim H, Salih M (2021) Survey of Iris Recognition using Deep Learning Techniques. J Al-Qadisiyah Comput Sci Math 13(3):47–56

    Google Scholar 

  9. Song Y, He Y, Zhang J (2019) A survey of visible iris recognition. In: CS & IT Conference Proceedings, vol 9, No 3. CS & IT Conference Proceedings

    Google Scholar 

  10. Shirke SD, Rajabhushnam C (2019) Iris recognition using visible wavelength light source and near infrared light source image database: a short survey. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, pp 566–571

    Chapter  Google Scholar 

  11. Rao SS, Shreyas R, Maske G, Choudhury AR (2020) Survey of Iris image segmentation and localization. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). IEEE, pp 539–546

    Chapter  Google Scholar 

  12. Adekunle A et al (2020) Feature extraction techniques for iris recognition system: A Survey. Int J Innov Res Comput Sci Technol 8(2):37–42. https://doi.org/10.21276/ijircst.2020.8.2.5

    Article  Google Scholar 

  13. Nguyen K, Fookes C, Jillela R, Sridharan S, Ross A (2017) Long range iris recognition: A survey. Pattern Recognit 72:123–143. https://doi.org/10.1016/j.patcog.2017.05.021

    Article  ADS  Google Scholar 

  14. Harakannanavar SS, Puranikmath VI (2017) Comparative survey of iris recognition. In: 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, pp 280–283

    Chapter  Google Scholar 

  15. Chen Y, Zhang W (2018) Iris liveness detection: a survey. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, pp 1–7

    Google Scholar 

  16. Carswell G, De Neve G (2022) Transparency, exclusion and mediation: how digital and biometric technologies are transforming social protection in Tamil Nadu, India. Oxford Development Studies 50(2):126–141

    Article  Google Scholar 

  17. Borkar K, Salankar S (2021) IRIS recognition system. In: 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, Karnataka, India, pp 1–6. https://doi.org/10.1109/ICMNWC52512.2021.9688382

  18. Alagarsamy SB, Murugan K (2022) Multimodal of ear and face biometric recognition using adaptive approach Runge–Kutta threshold segmentation and classifier with score level fusion. Wirel Pers Commun 124(2):1061–1080

    Article  Google Scholar 

  19. Shin Y, Lee Y, Shin W, Choi J (2008) Designing fingerprint-recognition-based access control for electronic medical records systems. In: 22nd International Conference on Advanced Information Networking and Applications-Workshops (Aina workshops 2008). IEEE, pp 106–110

    Chapter  Google Scholar 

  20. Applegate RA, Thibos LN, Twa MD, Sarver EJ (2009) Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality. J Cataract Refract Surg 35(1):139–152. https://doi.org/10.1016/j.jcrs.2008.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Labati RD, Genovese A, Muñoz E, Piuri V, Scotti F, Sforza G (2016) Biometric Recognition in Automated Border Control. ACM Comput Surv 49(2):1–39. https://doi.org/10.1145/2933241

    Article  Google Scholar 

  22. Sinha GR (ed) (2019) Advances in biometrics. Springer International Publishing, Cham

    Google Scholar 

  23. Perakslis C, Wolk R (2005) Social acceptance of RFID as a biometric security method. In: Proceedings. 2005 International Symposium on Technology and Society, 2005. Weapons and wires: prevention and safety in a time of fear. ISTAS 2005. IEEE, pp 79–87

  24. Kollmann J, Sharp H, Blandford A (2009) The importance of identity and vision to user experience designers on agile projects. In: 2009 Agile Conference. IEEE, pp 11–18

    Chapter  Google Scholar 

  25. O’Gorman L (2003) Comparing passwords, tokens, and biometrics for user authentication. Proc IEEE 91(12):2021–2040. https://doi.org/10.1109/JPROC.2003.819611

    Article  Google Scholar 

  26. Mehta M, Baldaniya H, Goriya N (2020) A systematic review of authentication methods for internet of things. In: 2020 IEEE International Conference for Innovation in Technology (INOCON). IEEE, pp 1–6

    Google Scholar 

  27. Ivanov SH, Webster C, Stoilova E, Slobodskoy D (2022) Biosecurity, crisis management, automation technologies and economic performance of travel, tourism and hospitality companies–a conceptual framework. Tourism Economics 28(1):3–26

    Article  Google Scholar 

  28. Chen J, Shen F, Chen DZ, Flynn PJ (2016) Iris Recognition Based on Human-Interpretable Features. Trans Inf FORENSICS Secur 11(7):1476–1485

    Article  Google Scholar 

  29. Arsalan M et al (2017) Deep Learning-Based Iris Segmentation for Iris Recognition in Visible Light Environment. Symmetry (Basel) 9(11):263–288. https://doi.org/10.3390/sym9110263

    Article  ADS  Google Scholar 

  30. Nguyen K, Fookes C, Ross A, Sridharan S (2018) Iris Recognition With Off-the-Shelf CNN Features: A Deep Learning Perspective. IEEE Access 6:18848–18855. https://doi.org/10.1109/ACCESS.2017.2784352

    Article  Google Scholar 

  31. Alaslani MG, Elrefaei LA (2018) Convolutional Neural Network Based Feature Extraction for IRIS Recognition. Int J Comput Sci Inf Technol 10(2):65–78. https://doi.org/10.5121/ijcsit.2018.10206

    Article  Google Scholar 

  32. Zhao T, Liu Y, Huo G, Zhu X (2019) A Deep Learning Iris Recognition Method Based on Capsule Network Architecture. IEEE Access 7:49691–49701. https://doi.org/10.1109/ACCESS.2019.2911056

    Article  Google Scholar 

  33. Lee MB, Kim YH, Park KR (2019) Conditional Generative Adversarial Network- Based Data Augmentation for Enhancement of Iris Recognition Accuracy. IEEE Access 7:122134–122152. https://doi.org/10.1109/ACCESS.2019.2937809

    Article  Google Scholar 

  34. Ahmadi N, Nilashi M, Samad S, Rashid TA, Ahmadi H (2019) An intelligent method for iris recognition using supervised machine learning techniques. Opt Laser Technol 120(December 2018):105701. https://doi.org/10.1016/j.optlastec.2019.105701

    Article  Google Scholar 

  35. Wang K, Kumar A (2019) Toward More Accurate Iris Recognition Using Dilated Residual Features. IEEE Trans Inf FORENSICS Secur 14(12):3233–3245

    Article  Google Scholar 

  36. Adamović S et al (2020) An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Futur Gener Comput Syst 107:144–157. https://doi.org/10.1016/j.future.2020.01.056

    Article  Google Scholar 

  37. Juneja K, Rana C (2021) Compression-Robust and Fuzzy-Based Feature-Fusion Model for Optimizing the Iris Recognition. Wirel Pers Commun 116(1):267–300. https://doi.org/10.1007/s11277-020-07714-3

    Article  Google Scholar 

  38. Jan F, Min-Allah N, Agha S, Usman I, Khan I (2021) A robust iris localization scheme for the iris recognition. Multimed Tools Appl 80(3):4579–4605. https://doi.org/10.1007/s11042-020-09814-5

    Article  Google Scholar 

  39. Wang C, Muhammad J, Wang Y, He Z, Sun Z (2020) Towards Complete and Accurate Iris Segmentation Using Deep Multi-Task Attention Network for Non-Cooperative Iris Recognition. IEEE Trans Inf Forensics Secur 15:2944–2959. https://doi.org/10.1109/TIFS.2020.2980791

    Article  Google Scholar 

  40. DonidaLabati R, Genovese A, Piuri V, Scotti F, Vishwakarma S (2021) I-SOCIAL-DB: A labeled database of images collected from websites and social media for Iris recognition. Image Vis Comput 105:104058. https://doi.org/10.1016/j.imavis.2020.104058

    Article  Google Scholar 

  41. Chen Y, Wu C, Wang Y (2021) Whether normalized or not? Towards more robust iris recognition using dynamic programming. Image Vis Comput 107:104112. https://doi.org/10.1016/j.imavis.2021.104112

    Article  Google Scholar 

  42. Mostofa M, Mohamadi S, Dawson J, Nasrabadi NM (2021) Deep GAN-Based Cross-Spectral Cross-Resolution Iris Recognition. IEEE Trans Biometrics Behav Identity Sci 3(4):443–463. https://doi.org/10.1109/TBIOM.2021.3102736

    Article  Google Scholar 

  43. Yang K, Xu Z, Fei J (2021) Dualsanet: dual spatial attention network for iris recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp 889–897

    Google Scholar 

  44. Zhao Z, Kumar A (2017) Towards more accurate iris recognition using deeply learned spatially corresponding features. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3809–3818

    Google Scholar 

  45. Gangwar A, Joshi A (2016) DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE, pp 2301–2305

    Chapter  Google Scholar 

  46. Liu M, Zhou Z, Shang P, Xu D (2020) Fuzzified Image Enhancement for Deep Learning in Iris Recognition. IEEE Trans Fuzzy Syst 28(1):92–99. https://doi.org/10.1109/TFUZZ.2019.2912576

    Article  Google Scholar 

  47. Baker SE, Hentz A, Bowyer KW, Flynn PJ (2009) Contact lenses: handle with care for iris recognition. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems. IEEE, pp 1–8

    Google Scholar 

  48. Baker SE, Hentz A, Bowyer KW, Flynn PJ (2010) Degradation of iris recognition performance due to non-cosmetic prescription contact lenses. Comput Vis Image Underst 114(9):1030–1044. https://doi.org/10.1016/j.cviu.2010.06.002

    Article  Google Scholar 

  49. Kohli N, Yadav D, Vatsa M, Singh R (2013) Revisiting iris recognition with color cosmetic contact lenses. In: 2013 International Conference on Biometrics (ICB). IEEE, pp 1–7

    Google Scholar 

  50. Yadav D, Kohli N, Doyle JS, Singh R, Vatsa M, Bowyer KW (2014) Unraveling the Effect of Textured Contact Lenses on Iris Recognition. IEEE Trans Inf Forensics Secur 9(5):851–862. https://doi.org/10.1109/TIFS.2014.2313025

    Article  Google Scholar 

  51. Raghavendra R, Raja KB, Busch C (2014) Ensemble of statistically independent filters for robust contact lens detection in iris images. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, pp 1–7

    Google Scholar 

  52. Doyle JS, Bowyer KW (2015) Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF. IEEE Access 3:1672–1683. https://doi.org/10.1109/ACCESS.2015.2477470

    Article  Google Scholar 

  53. Silva P, Luz E, Baeta R, Pedrini H, Falcao AX, Menotti D (2015) An approach to iris contact lens detection based on deep image representations. In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images. IEEE, pp 157–164

    Chapter  Google Scholar 

  54. Yadav D, Kohli N, Vatsa M, Singh R, Noore A (2017) Unconstrained visible spectrum iris with textured contact lens variations: database and benchmarking. In: 2017 IEEE International Joint Conference on Biometrics (IJCB). IEEE, pp 574–580

    Chapter  Google Scholar 

  55. Yadav D, Kohli N, Yadav S, Vatsa M, Singh R, Noore A (2018) Iris presentation attack via textured contact lens in unconstrained environment. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp 503–511

    Chapter  Google Scholar 

  56. Madhe SP, Patil BD, Holambe RS (2020) Design of a frequency spectrum-based versatile two-dimensional arbitrary shape filter bank: application to contact lens detection. Pattern Anal Appl 23(1):45–58. https://doi.org/10.1007/s10044-018-0764-6

    Article  MathSciNet  Google Scholar 

  57. Hsieh S-H, Li Y-H, Wang W, Tien C-H (2018) A Novel Anti-Spoofing Solution for Iris Recognition Toward Cosmetic Contact Lens Attack Using Spectral ICA Analysis. Sensors 18(3):795. https://doi.org/10.3390/s18030795

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Choudhary M, Tiwari VU (2019) An approach for iris contact lens detection and classification using ensemble of customized DenseNet and SVM”. Futur Gener Comput Syst 101:1259–1270. https://doi.org/10.1016/j.future.2019.07.003

    Article  Google Scholar 

  59. Kumar S, Lamba VK, Jangra S (2020) Anti-Spoofing for Iris Recognition With Contact Lens Detection. Adv Appl Math Sci 19(5):397–406

    Google Scholar 

  60. Arora S, Bhatia MPS (2020) Presentation attack detection for iris recognition using deep learning. Int J Syst Assur Eng Manag 11(S2):232–238. https://doi.org/10.1007/s13198-020-00948-1

    Article  Google Scholar 

  61. Fang Z, Czajka A (2020) Open source iris recognition hardware and software with presentation attack detection. In: 2020 IEEE International Joint Conference on Biometrics (IJCB). IEEE, pp 1–8

    Google Scholar 

  62. Ariffin N, Zin M, Asmuni H, Nuzly H, Hamed A (2021) Soft Lens Detection in Iris Image using Lens Boundary Analysis and Pattern Recognition Approach. Int J Adv Trends Comput Sci Eng 10(1):241–250. https://doi.org/10.30534/ijatcse/2021/341012021

    Article  Google Scholar 

  63. Parzianello L, Czajka A (2022) Saliency-guided textured contact lens-aware iris recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp 330–337

    Google Scholar 

  64. Yadav D, Kohli N, Vatsa M, Singh R, Noore A (2019) Detecting textured contact lens in uncontrolled environment using DensePAD. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

    Google Scholar 

  65. Liu Y, Yuan Y, Wang Q (2023) Uncertainty-Aware Graph Reasoning With Global Collaborative Learning for Remote Sensing Salient Object Detection. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3299245

    Article  Google Scholar 

  66. Liu Y, Xiong Z, Yuan Y, Wang Q (2023) Distilling Knowledge From Super-Resolution for Efficient Remote Sensing Salient Object Detection. IEEE Trans Geosci Remote Sens 61:1–16. https://doi.org/10.1109/TGRS.2023.3267271

    Article  CAS  Google Scholar 

  67. Liu Y, Xiong Z, Yuan Y, Wang Q (2023) Transcending Pixels: Boosting Saliency Detection via Scene Understanding From Aerial Imagery. IEEE Trans Geosci Remote Sens 61:1–16. https://doi.org/10.1109/TGRS.2023.3298661

    Article  CAS  Google Scholar 

  68. Ma L, Wang Y, Tan T (2002) Iris recognition based on multichannel Gabor filtering. In: Proc. Fifth Asian Conf. Computer Vision, vol 1, pp 279–283

    Google Scholar 

  69. BIT (2010) National Laboratory of Pattern Recognition (NLPR). http://biometrics.idealtest.org/dbDetailForUser.do?id=1#/ (accessed Nov. 23, 2022)

  70. Phillips PJ, Bowyer KW, Flynn PJ (2007) Comments on the CASIA version 1.0 Iris Data Set. IEEE Trans Pattern Anal Mach Intell 29(10):1869–1870. https://doi.org/10.1109/TPAMI.2007.1137

    Article  PubMed  Google Scholar 

  71. BIT (2010) http://biometrics.idealtest.org/dbDetailForUser.do?id=14#/ (accessed Nov. 23, 2022)

  72. Minaee S, Abdolrashidi A (2018) Iris-gan: learning to generate realistic iris images using convolutional gan. arXiv preprint arXiv:1812.04822

  73. Kumar A, Passi A (2010) Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognit 43(3):1016–1026. https://doi.org/10.1016/j.patcog.2009.08.016

    Article  ADS  Google Scholar 

  74. Chun CN, Chung R (2004) Iris recognition for palm-top application. In: International Conference on Biometric Authentication. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 426–433

    Chapter  Google Scholar 

  75. Synthetic Iris Textured Based – CITeR. https://citer.clarkson.edu/research-resources/biometric-dataset-collections-2/synthetic-iris-textured-based/. Accessed 13 Oct 2022

  76. Shah S, Ross A (2006) Generating synthetic irises by feature agglomeration. In: 2006 International Conference on Image Processing. IEEE, pp 317–320

    Chapter  Google Scholar 

  77. Zuo J, Schmid NA, Chen X (2007) On Generation and Analysis of Synthetic Iris Images. IEEE Trans Inf Forensics Secur 2(1):77–90. https://doi.org/10.1109/TIFS.2006.890305

    Article  Google Scholar 

  78. Crihalmeanu S, Ross A, Schuckers S, Hornak L (2007) A protocol for multibiometric data acquisition, storage and dissemination, vol 7. Technical Report, WVU, Lane Department of Computer Science and Electrical Engineering

    Google Scholar 

  79. Quality-Face/Iris Research Ensemble (Q-FIRE) – CITeR. https://citer.clarkson.edu/research-resources/biometric-dataset-collections-2/quality-faceiris-research-ensemble-q-fire/. Accessed 13 Oct 2022

  80. Kihal N, Chitroub S, Polette A, Brunette I, Meunier J (2017) Efficient multimodal ocular biometric system for person authentication based on iris texture and corneal shape. IET Biometrics 6(6):379–386. https://doi.org/10.1049/iet-bmt.2016.0067

    Article  Google Scholar 

  81. Yin Y, Liu L, Sun X (2011) SDUMLA-HMT: A multimodal biometric database. In: Biometric recognition: 6th Chinese Conference, CCBR 2011, Beijing, China, 3–4 December 2011. Proceedings 6. Springer, Berlin Heidelberg, pp 260–268

    Chapter  Google Scholar 

  82. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010) The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535. https://doi.org/10.1109/TPAMI.2009.66

    Article  PubMed  Google Scholar 

  83. Padole CN, Proenca H (2012) Periocular recognition: analysis of performance degradation factors. In: 2012 5th IAPR International Conference on Biometrics (ICB). IEEE, pp 439–445

    Chapter  Google Scholar 

  84. Dong W, Sun Z, Tan T (2009) A design of iris recognition system at a distance. In: 2009 Chinese Conference on Pattern Recognition. IEEE, pp 1–5

    Google Scholar 

  85. Edwards M, Gozdzik A, Ross K, Miles J, Parra EJ (2012) Technical note: Quantitative measures of iris color using high resolution photographs. Am J Phys Anthropol 147(1):141–149. https://doi.org/10.1002/ajpa.21637

    Article  PubMed  Google Scholar 

  86. Dehnavi M, Eshghi M (2012) “Design and implementation of a real time and train less eye state recognition system. EURASIP J Adv Signal Process 2012(1):30. https://doi.org/10.1186/1687-6180-2012-30

    Article  ADS  Google Scholar 

  87. Bashar M, Cumanan K, Burr AG, Ngo HQ, Hanzo L, Xiao P (2019) NOMA/OMA mode selection-based cell-free massive MIMO. In: ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, pp 1–6

    Google Scholar 

  88. Doyle JS, Bowyer KW, Flynn PJ (2013) Variation in accuracy of textured contact lens detection based on sensor and lens pattern. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS). IEEE, pp 1–7

    Google Scholar 

  89. Kohli N, Yadav D, Vatsa M, Singh R, Noore A (2016) Detecting medley of iris spoofing attacks using DESIST. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp 1–6. https://doi.org/10.1109/BTAS.2016.7791168

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Saini, S.S. Estimation towards the impact of contact lens in iris recognition: A study. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18818-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18818-4

Keywords

Navigation