Skip to main content
Log in

Image deraining via multi-level decomposition and empirical wavelet transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image deraining, a crucial process in image restoration, finds wide-ranging applications in computer vision. Existing state-of-the-art deraining techniques, predominantly relying on image smoothing, dictionary learning, sparse coding, and deep neural networks, often fall short in delivering desirable outputs when faced with heavy rain. In this research article, we propose an advanced approach for image deraining, employing a multilayer decomposition strategy based on Empirical Wavelet Transform (EWT) and Dual Dictionary Learning (DDL). The proposed method introduces the Dark Channel Prior (DCP) in the preprocessing stage and utilizes Frequency Discrimination (FD), Empirical Wavelet Transform, and sparse-based methods with Dual Dictionary Learning to generate one low and three high frequency (HF) decomposed image components. The rain parts are subsequently removed from each HF image component through morphological decomposition in multiple layers. The non-rain outputs are combined with the lower frequency image obtained from the bilateral filter output to produce the rain-free image. The final output is further refined by adjusting the contrast, sharpness, and color balance of the de-rained image. To validate the efficacy of our proposed algorithm, we conducted a comprehensive evaluation using both subjective (visual quality) and objective (quantitative quality metrics) approaches. Comparative analysis with state-of-the-art methods confirms that our method outperforms existing techniques, demonstrating superior image-deraining capabilities. The proposed approach showcases promising results in addressing the challenges posed by heavy rain, establishing it as a robust and effective solution for image-deraining applications in various computer vision domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at-

https://www.ee.nthu.edu.tw/cwlin/Rain_Removal/Rain_Removal.htm

https://xueyangfu.github.io/projects/tip2017.html

https://xueyangfu.github.io/projects/cvpr2017.html

https://ar5iv.labs.arxiv.org/html/1906.11129

https://ar5iv.labs.arxiv.org/html/1802.07412

References

  1. Garg, K, Nayar, S, (n.d.) Detection and removal of rain from videos. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. I-528-I-535. https://doi.org/10.1109/cvpr.2004.1315077

  2. Tripathi A, Mukhopadhyay S (2012) Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Proc 6:181–196. https://doi.org/10.1049/iet-ipr.2010.0547

    Article  MathSciNet  Google Scholar 

  3. You S, Tan RT, Kawakami R, Mukaigawa Y, Ikeuchi K (2016) Adherent Raindrop Modeling, Detection and Removal in Video. IEEE Trans Pattern Anal Mach Intell 38:1721–1733. https://doi.org/10.1109/tpami.2015.2491937

    Article  PubMed  Google Scholar 

  4. Kim J-H, Sim J-Y, Kim C-S (2015) Video Deraining and Desnowing Using Temporal Correlation and Low-Rank Matrix Completion. IEEE Trans Image Process 24:2658–2670. https://doi.org/10.1109/tip.2015.2428933

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  5. Kim J-H, Lee C, Sim J-Y, Kim C-S (2013) Single-image deraining using an adaptive nonlocal means filter. IEEE Int Conf Image Process 2013:914–917. https://doi.org/10.1109/icip.2013.6738189

    Article  Google Scholar 

  6. Manu, BN, (2015) Rain removal from still images using L0 gradient minimization technique. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) 263–268. https://doi.org/10.1109/iciteed.2015.7408953

  7. Hao D, Li Q, Li C (2017) Single-image-based rain streak removal using multidimensional variational mode decomposition and bilateral filter. J Electron Imaging 26:013020-1-013020–12. https://doi.org/10.1117/1.jei.26.1.013020

    Article  Google Scholar 

  8. Kang L-W, Lin C-W, Fu Y-H (2012) Automatic Single-Image-Based Rain Streaks Removal via Image Decomposition. IEEE Trans Image Process 21:1742–1755. https://doi.org/10.1109/tip.2011.2179057

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  9. Huang D-A, Kang L-W, Wang Y-CF, Lin C-W (2014) Self-Learning Based Image Decomposition With Applications to Single Image Denoising. IEEE Trans Multimed 16:83–93. https://doi.org/10.1109/tmm.2013.2284759

    Article  Google Scholar 

  10. Chen D-Y, Chen C-C, Kang L-W (2014) Visual Depth Guided Color Image Rain Streaks Removal Using Sparse Coding. IEEE Trans Circuits Syst Video Technol 24:1430–1455. https://doi.org/10.1109/tcsvt.2014.2308627

    Article  Google Scholar 

  11. Wang Y, Liu S, Chen C, Zeng B (2017) A Hierarchical Approach for Rain or Snow Removing in a Single Color Image. IEEE Trans Image Process 26:3936–3950. https://doi.org/10.1109/tip.2017.2708502

    Article  ADS  MathSciNet  Google Scholar 

  12. Li Y, Tan RT, Guo X, Lu J, Brown MS (2016) Rain Streak Removal Using Layer Priors. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2016:2736–2744. https://doi.org/10.1109/cvpr.2016.299

    Article  Google Scholar 

  13. Yang W, Tan RT, Feng J, Liu J, Guo Z, Yan S (2017) Deep Joint Rain Detection and Removal from a Single Image. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2017:1685–1694. https://doi.org/10.1109/cvpr.2017.183

    Article  Google Scholar 

  14. Fu X, Huang J, Ding X, Liao Y, Paisley J (2017) Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal. IEEE Trans Image Process 26:2944–2956. https://doi.org/10.1109/tip.2017.2691802

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang Y, Liu S, Xie D, Zeng B (2020) Removing Rain Streaks by a Linear Model. IEEE Access 8:54802–54815. https://doi.org/10.1109/access.2020.2981643

    Article  Google Scholar 

  16. Tang H, Zhu L, Zhang D, Wang X (2019) Single image rain removal model using pure rain dictionary learning. IET Image Proc 13:1797–1804. https://doi.org/10.1049/iet-ipr.2018.5122

    Article  Google Scholar 

  17. Zhang, J, Zhao, C, Xiong, R, Ma, S, Zhao, D (2012) Image super-resolution via dual-dictionary learning and sparse representation. 2012 IEEE International Symposium on Circuits and Systems 57, 1688–1691. https://doi.org/10.1109/iscas.2012.6271583

  18. He K, Sun J, Tang X (2011) Single Image Haze Removal Using Dark Channel Prior. IEEE Trans Pattern Anal Mach Intell 33:2341–2353. https://doi.org/10.1109/tpami.2010.168

    Article  PubMed  Google Scholar 

  19. Iqbal CH, Munawwar M, Riaz MM, Iltaf N, Ghafoor A, Sohaib AS (2020) A multifocus image fusion using highlevel DWT components and guided filter. Multimed Tools Appl 79:12817–12828. https://doi.org/10.1007/s11042-020-08661-8

    Article  Google Scholar 

  20. Gilles J (2013) Empirical Wavelet Transform. IEEE Trans Signal Process 61:3999–4010. https://doi.org/10.1109/tsp.2013.2265222

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang M, Gunturk B (2008) Multiresolution Bilateral Filtering for Image Denoising. IEEE Trans Image Process 17:2324–2333. https://doi.org/10.1109/tip.2008.2006658

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  22. Aharon M, Elad M, Bruckstein A (2006) $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans Signal Process 54:4311–4322. https://doi.org/10.1109/tsp.2006.881199

  23. Fadili MJ, Starck J-L, Bobin J, Moudden Y (2010) Image Decomposition and Separation Using Sparse Representations: An Overview. Proc IEEE 98:983–994. https://doi.org/10.1109/jproc.2009.2024776

  24. Abdullah-Al-Wadud, M, Kabir, MH, Dewan, MAA, Chae, O (2007) A Dynamic Histogram Equalization for Image Contrast Enhancement. 2007 Digest of Technical Papers International Conference on Consumer Electronics 53, 593–600. https://doi.org/10.1109/icce.2007.341567

  25. Gabarda, S, Cristóbal, G (2007) Blind image quality assessment through anisotropy. J Optic Soc Am A 24, B-42-B-51. https://doi.org/10.1364/josaa.24.000b42

  26. Hasler D, Suesstrunk SE (2003) Measuring colorfulness in natural images. Human Vis Electron Imaging VIII 5000:87–95. https://doi.org/10.1117/12.477378

    Article  ADS  Google Scholar 

  27. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/tip.2003.819861

    Article  ADS  PubMed  Google Scholar 

  28. Zhang H, Patel VM (2018) Density-Aware Single Image De-raining Using a Multi-stream Dense Network. IEEE/CVF Conf Comput Vis Pattern Recognit 2018:695–704. https://doi.org/10.1109/cvpr.2018.00079

    Article  Google Scholar 

  29. Yasarla R, Valanarasu JMJ, Patel VM (2021) Exploring Overcomplete Representations for Single Image Deraining Using CNNs. IEEE J Select Top Signal Process 15:229–239. https://doi.org/10.1109/jstsp.2020.3039393

    Article  ADS  Google Scholar 

  30. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  ADS  Google Scholar 

  31. Nanfeng J, Weiling C, Liqun L, Tiesong Z (2021) Single image rain removal via multi-module deep grid network. Comput Vis Image Underst 202:103106–103114. https://doi.org/10.1016/j.cviu.2020.103106

    Article  Google Scholar 

  32. Othman MK, Abdulla AA (2022) Enhanced Single Image Dehazing Technique based on HSV Color Space. UHD J Sci Technol 6(2):135–146. https://doi.org/10.21928/uhdjst.v6n2y2022.pp135-146

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Sarkar.

Ethics declarations

Conflicts of interests/Competing interests

The author declares that there is no conflict of interest regarding the submission of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M., Mondal, U., Pal, U. et al. Image deraining via multi-level decomposition and empirical wavelet transform. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18468-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18468-6

Keywords

Navigation