Skip to main content
Log in

Monkeypox recognition and prediction from visuals using deep transfer learning-based neural networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As the globe struggles to recover from COVID-19, the monkeypox virus has emerged as a new global pandemic threat. Monkeypox cases are still being reported daily from different nations despite the virus not being as harmful or contagious as COVID-19. As a result, the possibility of another worldwide pandemic occurring directly due to a lack of adequate preventative measures will not come as a complete shock to everyone. Diagnosing Monkeypox in its early stages may be challenging because it resembles chickenpox and measles. When confirmatory Polymerase Chain Reaction assays are not readily available, monitoring suspected cases and swiftly detecting them may be possible with computer-assisted detection of monkeypox lesions. Recent research has shown that deep learning models have significant promise for image-based diagnostics, including cancer diagnosis, identifying tumor cells, and detecting COVID-19 patients. To address these challenges, we built a deep learning model based on transfer learning that can assist medical professionals and other individuals in determining whether they are suffering from Monkeypox. The InceptionV3 model utilized in this study was trained with the publicly accessible Monkeypox dataset. During the studies, the model attained an accuracy of 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. https://www.who.int/emergencies/situations/monkeypox-oubreak-2022

  2. https://keras.io/

  3. https://github.com/mHealthBuet/Monkeypox-Skin-Lesion-Dataset

References

  1. Tambo E, Al-Nazawi AM (2022) Combating the global spread of poverty-related Monkeypox outbreaks and beyond. Infect Dis Poverty 11(04):4–8

    Google Scholar 

  2. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, ... Orkin CM (2022) Monkeypox virus infection in humans across 16 countries—April–June 2022. New England J Med 387(8):679–691

  3. Tambo E, Al-Nazawi AM (2022) Combating the global spread of poverty-related Monkeypox outbreaks and beyond. Infect Dis Poverty 11(1):1–5

    Article  Google Scholar 

  4. World Health Organization (WHO) (2022). https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON392. Accessed on July 30, 2022

  5. McCollum AM, Damon IK (2014) Human monkeypox. Clin Infect Dis 58(2):260–267

    Article  PubMed  Google Scholar 

  6. Alakunle E, Moens U, Nchinda G, Okeke MI (2020) Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses 12(11):1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. "WHO Monkeypox Fact Sheet," 2022, [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/Monkeypox. Accessed 30 July 2022

  8. Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR (2021) Reemergence of human Monkeypox and declining population Immunity in the context of urbanization, Nigeria, 2017–2020. Emerg Infect Dis 27(4):1007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michaeleen Doucleff. Scientists warned us about Monkeypox in 1988. here's why they were right. (accessed on may 27,2022). https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-Monkeypox-in-1988-heres-why-they-were-right. May 2022.

  10. Monkeypox and smallpox vaccine. (accessed on July 30, 2022). https://www.cdc.gov/poxvirus/Monkeypox/clinicians/treatment.html. 2022

  11. Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, ... Hruby DE (2022) Clinical features and management of human Monkeypox: a retrospective observational study in the UK. The Lancet Infectious Diseases

  12. Alice Park. There's already a Monkeypox vaccine. but not everyone may need it. https://time.com/6179429/Monkeypox-vaccine. (accessed on July 30, 2022).

  13. Ahsan MM, Nazim R, Siddique Z, Huebner P (2021) Detection of COVID-19 patients from CT scan and chest X-ray data using modified MobileNetV2 and LIME. In Healthcare (Vol 9, No. 9, p. 1099). MDPI

  14. Chaturvedi SS, Tembhurne JV, Diwan T (2020) A multiclass skin Cancer classification using deep convolutional neural networks. Multimed Tools Appl 79(39):28477–28498

    Article  Google Scholar 

  15. Ahsan MM, Uddin MR, Farjana M, Sakib AN, Momin KA, Luna SA (2022) Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16. arXiv preprint arXiv:2206.01862

  16. Arias-Garzón D, Alzate-Grisales JA, Orozco-Arias S, Arteaga-Arteaga HB, Bravo-Ortiz MA, Mora-Rubio A, ... Tabares-Soto R (2021) COVID-19 detection in X-ray images using convolutional neural networks. Mach Learn Appl 6:100138

  17. Sanket S, Vergin Raja Sarobin M, Jani Anbarasi L, Thakor J, Singh U, Narayanan S (2022) Detection of novel coronavirus from chest X-rays using deep convolutional neural networks. Multimed Tools Appl 81(16):22263–22288

    Article  PubMed  Google Scholar 

  18. Awotunde JB, Ajagbe SA, Oladipupo MA, Awokola JA, Afolabi OS, Mathew TO, Oguns YJ (2021) An improved machine learnings diagnosis technique for COVID-19 pandemic using chest X-ray images. In: International Conference on Applied Informatics (pp. 319–330). Cham: Springer International Publishing

  19. Ajagbe SA, Oki OA, Oladipupo MA, Nwanakwaugwum A (2022) Investigating the efficiency of deep learning models in bioinspired object detection. In: 2022 International conference on electrical, computer and energy technologies (ICECET) (pp. 1–6). IEEE

  20. Ajagbe SA, Amuda KA, Oladipupo MA, Oluwaseyi FA, Okesola KI (2021) Multi-classification of Alzheimer disease on magnetic resonance images (MRI) using deep convolutional neural network (DCNN) approaches. Int J Adv Comput Res 11(53):51

    Article  Google Scholar 

  21. Ogunseye EO, Adenusi CA, Nwanakwaugwu AC, Ajagbe SA, Akinola SO (2022) Predictive analysis of mental health conditions using AdaBoost algorithm. ParadigmPlus 3(2):11–26

    Article  Google Scholar 

  22. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, ... Chen CM (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Reports 6(1):1–13

  23. Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718

  24. Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D (2014) Early diagnosis of Alzheimer's disease with deep learning. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI) (pp 1015–1018). IEEE

  25. Rahaman MM, Li C, Wu X, Yao Y, Hu Z, Jiang T, ... Qi S (2020) A survey for cervical cytopathology image analysis using deep learning. IEEE Access 8:61687–61710

  26. Rahaman MM, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, ... Zhao X (2020) Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. J X-ray Sci Technol 28(5):821–839

  27. Ahsan MM, Uddin MR, Luna SA (2022) Monkeypox Image Data collection. arXiv preprint arXiv:2206.01774

  28. "Monkeypoxmeter: Real time Monkeybox tracker," 2022, [Online]. Available: https://www.Monkeypoxmeter.com/. Accessed 30 July 2022

  29. Centers for Disease Control and Prevention, "Monkeypox — poxvirus," https://www.cdc.gov/poxvirus/Monkeypox/index.html. (Accessed on 06/30/2022)

  30. Ahsan MM, Siddique Z (2022) Machine learning-based heart disease diagnosis: A systematic literature review. Artif Intell Med 128:102289

  31. Gisele Helena Barboni Miranda and Joaquim Cezar Felipe (2015) Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput Biol Med 64:334–346

  32. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A (2020) Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: Results of 10 convolutional neural networks. Comput Biol Med 121:103795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang L, Lin ZQ, Wong A (2020) Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci Reports 10(1):1–12

    ADS  CAS  Google Scholar 

  34. Sandeep R, Vishal KP, Shamanth MS, Chethan K (2022) Diagnosis of visible diseases using cnns. In: Proceedings of International Conference on Communication and Artificial Intelligence, pages 459–468. Springer

  35. Roy K, Chaudhuri SS, Ghosh S, Dutta SK, Chakraborty P, Sarkar R (2019) Skin disease detection based on different segmentation techniques. In: 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), pages 1–5. IEEE

  36. Fan S, Jiang M, Shen Z, Koenig BL, Kankanhalli MS, Zhao Q (2017) The role of visual attention in sentiment prediction. In: Proceedings of the 25th ACM international conference on Multimedia (pp 217–225)

  37. Fan S, Shen Z, Jiang M, Koenig BL, Xu J, Kankanhalli MS, Zhao Q (2018) Emotional attention: A study of image sentiment and visual attention. In: Proceedings of the IEEE Conference on computer vision and pattern recognition (pp 7521–7531)

  38. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  39. Dubey AK, Mohbey KK (2023) Enabling CT-Scans for covid detection using transfer learning-based neural networks. J Biomol Struct Dyn 41(6):2528–2539

    Article  PubMed  CAS  Google Scholar 

  40. Wang F, Casalino LP, Khullar D (2019) Deep learning in medicine—promise, progress, and challenges. JAMA Int Med 179(3):293–294

    Article  Google Scholar 

  41. Hosny KM, Kassem MA, Foaud MM (2019) Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 14(5):e0217293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sitaula C, Shahi TB (2022) Monkeypox virus detection using pre-trained deep learning-based approaches. J Med Syst 46(11):78

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ahsan MM, Uddin MR, Ali MS, Islam MK, Farjana M, Sakib AN, ... Luna SA (2023) Deep transfer learning approaches for Monkeypox disease diagnosis. Exp Syst Appl 216:119483

  44. Ahsan MM, Ali MS, Hassan MM, Abdullah TA, Gupta KD, Bagci U, ... Soliman NF (2023) Monkeypox diagnosis with interpretable deep learning. IEEE Access

  45. Dahiya N, Sharma YK, Rani U, Hussain S, Nabilal KV, Mohan A, Nuristani N (2023) Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection. Sci Rep 13(1):15930

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  46. Zhang Y, Cheng C, Zhang Y (2022) Multimodal emotion recognition based on manifold learning and convolution neural network. Multimed Tools Appl 81(23):33253–33268

    Article  Google Scholar 

  47. Ali SN, Ahmed M, Paul J, Jahan T, Sani SM, Noor N, Hasan T (2022) Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study. arXiv preprint arXiv:2207.03342

  48. Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural Language Processing (Almost) from Scratch. J Mach Learn Res 12:2493–2537

    Google Scholar 

  49. Goldberg Y (2016) A primer on neural network models for natural language processing. J Artif Intell Res 57:345–420

    Article  MathSciNet  Google Scholar 

  50. Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A Neural Probabilistic Language Model. J Mach Learn Res 3:1137–1155

    Google Scholar 

  51. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the International Conference on Machine Learning (ICML 2009)

  52. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  53. Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput 29(9):2352–2449

    Article  MathSciNet  PubMed  Google Scholar 

  54. Nasir JA, Khan OS, Varlamis I (2021) Fake news detection: A hybrid CNN-RNN based deep learning approach. Int J Inf Manage Data Insights 1(1):100007

    Google Scholar 

  55. Arun PV (2013) A CNN based Hybrid approach towards automatic image registration. Geodesy Cartogr 39(3):121–128

    Article  ADS  Google Scholar 

  56. Mohbey KK, Meena G, Kumar S, Lokesh K (2023) A CNN-LSTM-based hybrid deep learning approach for sentiment analysis on Monkeypox tweets. N Gener Comput. 1–19. https://doi.org/10.1007/s00354-023-00227-0

  57. Manjurul Ahsan M, Ramiz Uddin M, Farjana M, Nazmus Sakib A, Al Momin K, Akter Luna S (2022) Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16. arXiv e-prints, arXiv-2206

  58. Wu J (2015) CNN for Dummies. Nanjing University, Nanjing, China, p 202

    Google Scholar 

  59. Mathworks.com (2018) Convolutional Neural Network. [online] Available at: https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network.html [Accessed April 20 2018]. View publication

  60. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vision 115(3):211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  61. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, ... Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 1–9)

  62. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 3–6

  63. Lin M, Chen Q, Yan S (2014) Network In network. arXiv preprint arXiv:1312.4400v3 [cs.NE]

  64. Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. ICML'07 Proceedings of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA. pp 759–766. https://doi.org/10.1145/1273496.1273592

  65. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) "Rethinking the inception architecture for computer vision." In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2818–2826. Las Vegas: IEEE

  66. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  67. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. IEEE Access 6:9375–9389

    Article  Google Scholar 

  68. Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT (2020) New machine learning method for image-based diagnosis of COVID-19. PLoS ONE 15(6):e0235187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pang B, Lee L, Vaithyanathan S (2002) "Thumbs up?: Sentiment Classification Using Machine Learning Techniques." In conference on Empircal methods in natural language processing in association for computational Linguistics vol 10, pp 79–86

  70. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  71. Chou J-S, Cheng M-Y, Wu Y-W, Pham A-D (2014) Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification. Expert Syst Appl 41(8):3955–3964

    Article  Google Scholar 

  72. Prabowo R, Thelwall M (2009) Sentiment Analysis: A Combined Approach. J Informetr 3(2):143–157

    Article  Google Scholar 

  73. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106

    Article  Google Scholar 

  74. Mohbey KK, Sharma S, Kumar S, Sharma M (2022) COVID-19 identification and analysis using CT scan images: Deep transfer learning-based approach. In: Blockchain Applications for Healthcare Informatics (pp. 447–470). Academic Press

  75. Xie Y, Xing F, Kong X, Su H, Yang L (2015) Beyond classification: structured regression for robust cell detection using convolutional neural network. In: International conference on medical image computing and computer-assisted intervention (pp 358–365). Springer Cham

  76. Powers DM (2020) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061

  77. Mohbey KK (2020) Multiclass approach for user behavior prediction using deep learning framework on twitter election dataset. J Data Inf Manage 2(1):1–14

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar Mohbey.

Ethics declarations

Ethical approval

NA.

Conflict of interest

The authors of this manuscript state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, G., Mohbey, K.K. & Kumar, S. Monkeypox recognition and prediction from visuals using deep transfer learning-based neural networks. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18437-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18437-z

Keywords

Navigation