Skip to main content
Log in

Deep Ridge Regression Neural Network-based hybrid precoder and combiner design

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In mm-wave MIMO systems, hybrid precoder and combiner designs enhance antenna gain for improved transmission efficiency. However, beam-squint conditions during transmission impact throughput, affecting codebook and increasing beam focus and angle of arrival difference, degrading channel performance. Hence, a novel the Pylon \(\partial\)PSO Method has been proposed to minimize codebook size and array gain, reducing the difference between beam focus and angle of arrival. A Grassmannian codebook is created without compromising throughput. For channel state estimation, existing techniques using the Kronecker product which face convergence errors due to improper hyperparameter matrix selection. Hence, an innovative Lagrange Dual technique and Separable K-Singular Value DE polymerization (K-SVDEp) have been used in dictionary learning that results in the Pt3 product to find the best dictionaries in which block sparse values are estimated using a Deep Ridge Regression Neural Network-based estimator that gives an optimum hyperparameter matrix and eliminates convergence error. Furthermore, designing a combiner from the hyperparameter matrix faces mathematical challenges. Hence, a novel Glasgow technique is utilized which converges the design parameter value with a local optimum obtained using the GEO algorithm. The proposed design has been implemented on the MATLAB platform and outperforms existing techniques with a high spectral efficiency of 45 bits/Hz, SNR of 13.4 dB, and low SER of \(1{0}^{-4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang H, Xiao P, Li X (2022) Channel parameter estimation of mmWave mimo system in urban traffic scene: a training channel-based method. IEEE Trans Intell Transport Syst 25(1):754–762. https://doi.org/10.1109/TITS.2022.3145363

  2. Uwaechia AN, Mahyuddin NM (2020) A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access 8:62367–62414

    Article  Google Scholar 

  3. Tripathi S, Sabu NV, Gupta AK, Dhillon HS (2021) Millimeter-wave and terahertz spectrum for 6G wireless. 6G Mobile Wireless Networks. Springer, Cham, pp 83–121

    Chapter  Google Scholar 

  4. Wang S, He M, Wang J, Ran R, Ji H, Leung VC (2022) A family of hybrid precoding schemes for millimeter-wave massive MIMO systems. IEEE Syst J  16(3):4881–4891. https://doi.org/10.1109/JSYST.2022.3147956

  5. Wei K, Xu J, Xu W, Wang N, Chen D (2022) Distributed neural precoding for hybrid mmWave MIMO communications with limited feedback. IEEE Commun Lett 26(7):1568–1572. https://doi.org/10.1109/LCOMM.2022.3167712

  6. Qi C, Liu Q, Yu X, Li GY (2022) Hybrid precoding for mixture use of phase shifters and switches in mmWave massive MIMO. IEEE Trans Commun 70(6):4121–4133. https://doi.org/10.1109/TCOMM.2022.3173304

  7. Mahmood M, Koc A, Le-Ngoc T (2022) 3-D antenna array structures for millimeter wave multi-user massive MIMO hybrid precoder design: a performance comparison. IEEE Commun Lett 26(6):1393–1397. https://doi.org/10.1109/LCOMM.2022.3163668

  8. You Y, Zhang C, Zhang L (2022) Bayesian matching pursuit based estimation of off-grid channel for millimeter wave massive MIMO system. IEEE Trans Veh Technol 71(11):11603–11614. https://doi.org/10.1109/TVT.2022.3169721

  9. Mohammed AN (2022) Millimeter wave and MIMO antenna beamforming for next-generation wireless communications. Theses and Dissertations. 710. https://repository.fit.edu/etd/710

  10. Dai L, Jiao R, Adachi F, Poor HV, Hanzo L (2020) Deep learning for wireless communications: An emerging interdisciplinary paradigm. IEEE Wirel Commun 27(4):133–139

    Article  Google Scholar 

  11. Chen Z, Tang J, Zhang XY, So DKC, Jin S, Wong KK (2021) Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems. IEEE Trans Wireless Commun 21(3):1586–1601

    Article  Google Scholar 

  12. Koc A, Bishe F, Le-Ngoc T (2022) Energy-efficient throughput maximization in mmWave MU-Massive-MIMOOFDM: genetic algorithm based resource allocation. IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA 2022:256–261. https://doi.org/10.1109/WCNC51071.2022.9771919

  13. Jawarneh A, Kadoch M, Albataineh Z (2022) Decoupling energy efficient approach for hybrid precoding-based mmWave massive MIMO-NOMA with SWIPT. IEEE Access 10:28868–28884

    Article  Google Scholar 

  14. Kebede T, Wondie Y, Steinbrunn J, Kassa HB, Kornegay KT (2022) Precoding and beamforming techniques in mmWave massive MIMO: performance assessment. IEEE Access 10:16365–16387

    Article  Google Scholar 

  15. Li M, Wang Z, Tian X, Liu Q (2017) Joint hybrid precoder and combiner design for multi-stream transmission in mmWave MIMO systems. IET Commun 11(17):2596–2604

    Article  Google Scholar 

  16. Majumder M, Saxena H, Srivastava S, Jagannatham AK (2021) Optimal bit allocation-based hybrid precoder-combiner design techniques for mmWave MIMO-OFDM systems. IEEE Access 9:54109–54125

    Article  Google Scholar 

  17. Kabalci Y, Ali M (2021) Iterative geometric mean decomposition based secure hybrid precoder design for mmWave massive MIMO communication systems. AEU-Int J Electron Commun 135:153749

    Article  Google Scholar 

  18. Ma W, Qi C, Zhang Z, Cheng J (2020) Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans Commun 68(5):2838–2849

    Article  Google Scholar 

  19. Yu Q, Zhai X, Zhao M (2017) An energy-efficient hybrid precoding algorithm for multiuser mmWave massive MIMO systems. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada 1–5. https://doi.org/10.1109/VTCFall.2017.8288020

  20. Jiang J, Yuan Y, Zhen L (2019) Multi-user hybrid precoding for dynamic subarrays in mmWave Massive MIMO systems. IEEE Access 7:101718–101728

    Article  Google Scholar 

  21. Tao J, Wang Q, Luo S, Chen J (2019) Constrained deep neural network based hybrid beamforming for millimeter wave massive MIMO systems. ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China 1–6. https://doi.org/10.1109/ICC.2019.8761742

  22. Rostami M, Oussalah M, Berahmand K, Farrahi V (2023) Community detection algorithms in healthcare applications: a systematic review. IEEE Access 11:30247–30272. https://doi.org/10.1109/ACCESS.2023.3260652

  23. Sheikhpour R, Berahmand K, Forouzandeh S (2023) Hessian-based semi-supervised feature selection using generalized uncorrelated constraint. Knowl-Based Syst 269:110521

    Article  Google Scholar 

  24. Bao X, Feng W, Zheng J, Li J (2020) Deep CNN and equivalent channelbased hybrid precoding for mmWave massive MIMO systems. IEEE Access 8:19327–19335

    Article  Google Scholar 

  25. Tao J, Chen J, Xing J, Fu S, Xie J (2020) Autoencoder neural network based intelligent hybrid beamforming design for mmWave Massive MIMO systems. IEEE Trans Cogn Commun Netw 6(3):1019–1030

    Article  Google Scholar 

  26. Chen J, Feng W, Xing J, Yang P, Sobelman GE, Lin D, Li S (2020) Hybrid beamforming/combining for millimeter wave MIMO: A machine learning approach. IEEE Trans Veh Technol 69(10):11353–11368

    Article  Google Scholar 

  27. Elbir AM, Papazafeiropoulos AK (2019) Hybrid precoding for multiuser millimeter wave massive MIMO systems: A deep learning approach. IEEE Trans Veh Technol 69(1):552–563

    Article  Google Scholar 

  28. Li X, Alkhateeb A (2019) Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA 800–805. https://doi.org/10.1109/IEEECONF44664.2019.9048966

  29. Wang Q, Feng K, Li X, Jin S (2020) Precoder Net: Hybrid beamforming for millimeter wave systems with deep reinforcement learning. IEEE Wirel Commun Lett 9(10):1677–1681

    Article  Google Scholar 

  30. Majumder M, Saxena H, Srivastava S, Jagannatham AK (2021) Bit allocation-based hybrid precoder-combiner design techniques for mmWave MIMO-OFDM systems. IEEE Access 9:54109–54125

    Article  Google Scholar 

  31. Zhang R, Zou W, Wang Y, Cui M (2019) Hybrid precoder and combiner design for single-user mmWave MIMO systems. IEEE Access 7:63818–63828

    Article  Google Scholar 

  32. Tembhurne JV, Almin MM, Diwan T (2022) Mc-DNN: Fake news detection using multi-channel deep neural networks. Int J Semant Web Inform Syst (IJSWIS) 18(1):1–20

    Article  Google Scholar 

  33. Srivastava AM, Rotte PA, Jain A, Prakash S (2022) Handling data scarcity through data augmentation in training of deep neural networks for 3D data processing. Int J Semant Web Inform Syst (IJSWIS) 18(1):1–16

    Article  Google Scholar 

  34. Chiang TA, Che ZH, Huang YL, Tsai CY (2022) Using an ontology-based neural network and DEA to discover deficiencies of hotel services. Int J Semant Web Inform Syst (IJSWIS) 18(1):1–19

    Article  Google Scholar 

  35. Anil BC, Dayananda P, Nethravathi B, Raisinghani MS (2022) Efficient local cloud-based solution for liver cancer detection using deep learning. Int J Semant Web Inform Syst (IJSWIS) 12(1):1–13

    Google Scholar 

  36. Kadri O, Benyahia A, Abdelhadi A (2022) Tifinagh handwriting character recognition using a CNN provided as a web service. Int J Semant Web Inform Syst (IJSWIS) 12(1):1–17

    Google Scholar 

  37. Xie H, González-Prelcic N (2020) Dictionary learning for channel estimation in hybrid frequency-selective mmWave MIMO systems. IEEE Trans Wirel Commun 19(11):7407–7422

    Article  Google Scholar 

  38. Gilabert PL, Lopez-Bueno D, Montoro G (2018) Spectral weighting orthogonal matching pursuit algorithm for enhanced out-of-band digital predistortion linearization. IEEE Trans Circuits Syst II Express Briefs 66(7):1277–1281

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Equal.

Corresponding author

Correspondence to Lalitha Nagapuri.

Ethics declarations

Ethical statement

Not applicable.

Ethical approval

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagapuri, L., Penchala, S., Vallem, S. et al. Deep Ridge Regression Neural Network-based hybrid precoder and combiner design. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18205-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18205-z

Keywords

Navigation