Skip to main content
Log in

Modeling and computational fluid dynamics simulation of blood flow behavior based on MRI and CT for Atherosclerosis in Carotid Artery

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Carotid atherosclerosis is one of the main cardiovascular diseases, widely considered as the main reason for death. Atherosclerosis forms a plaque that impedes blood vessels, and if ruptured, it causes a stroke or heart attack. The treatment protocol for atherosclerosis depends heavily on plaque type, structure, and composition, affecting plaque behavior (stable/unstable) or vulnerability. The fluid–structure interaction between the blood vessels and the blood flow must be examined to study the plaque's behavior. Consequently, this paper aims to reconstruct patient-specific three-dimensional models of the blood vessels for simulation and three-dimensional (3D) Printing, particularly for the carotid artery. In addition, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) datasets of atherosclerotic vessels are used to reconstruct the 3D model fed into a simulation program to measure the stress, strain, pressure, and velocity to assess the plaque. Five analyses studies were conducted on the constructed blood vessels; Non-pathological Flow in a cylindrical artery, Pathological Flow in a cylindrical artery, Non-pathological Flow in a 2D bifurcating carotid artery, Blood flow analysis in a normal carotid artery, and Blood flow analysis in a stenosed carotid artery. Two validation studies were performed for normal and atherosclerotic arteries. The results agreed with previous well-published work, considering that a 3D realistic model was printed for the vessel. Based on the above, our work provides a simulation environment for predicting atherosclerotic plaque behavior that helps medical specialists choose the proper treatment and preventive medical plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available from the last author upon reasonable request, if it does not violate the copyright issue.

References

  1. Libby P et al (2019) Lewis EF. Atheroscler Nat Rev Dis Prim 5(1):56

    Article  Google Scholar 

  2. Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276(6):618–632. https://doi.org/10.1111/joim.12296

    Article  Google Scholar 

  3. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. https://doi.org/10.1038/35025203

  4. Kashyap V, Arora BB, Bhattacharjee S (2020) A computational study of branch-wise curvature in idealized coronary artery bifurcations. Appl Eng Sci 4:100027. https://doi.org/10.1016/j.apples.2020.100027

    Article  Google Scholar 

  5. Sun Y, Guan X (2018) Autophagy: A new target for the treatment of atherosclerosis. Front Lab Med 2(2):68–71. https://doi.org/10.1016/j.flm.2018.07.002

    Article  Google Scholar 

  6. Carpenter HJ, Gholipour A, Ghayesh MH, Zander AC, Psaltis PJ (2020) A review on the biomechanics of coronary arteries. Int J Eng Sci 147:103201. https://doi.org/10.1016/j.ijengsci.2019.103201

    Article  MathSciNet  Google Scholar 

  7. Lopes D, Puga H, Teixeira J, Lima R (2020) Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. J Biomech. 111. https://doi.org/10.1016/j.jbiomech.2020.110019.

  8. Zaromytidou M et al (2016) Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hell J Cardiol 57(6):389–400. https://doi.org/10.1016/j.hjc.2016.11.019

    Article  Google Scholar 

  9. Doutel E, Carneiro J, Campos JBLM, Miranda JM (2018) Experimental and numerical methodology to analyze flows in a coronary bifurcation. Eur J Mech B/Fluids 67:341–356. https://doi.org/10.1016/j.euromechflu.2017.09.009

    Article  MathSciNet  Google Scholar 

  10. Samady H et al (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788. https://doi.org/10.1161/CIRCULATIONAHA.111.021824

    Article  Google Scholar 

  11. Han D et al (2016) Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: A direct comparison with fractional flow reserve. J Am Heart Assoc 5(12):e004186. https://doi.org/10.1161/JAHA.116.004186

    Article  Google Scholar 

  12. Siasos G et al (2018) Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis. J Am Coll Cardiol 71(19):2092–2102. https://doi.org/10.1016/j.jacc.2018.02.073

    Article  Google Scholar 

  13. Soulis JV, Fytanidis DK, Seralidou KV, Giannoglou GD (2014) Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations. Hippokratia 18(1):12–16

    Google Scholar 

  14. Zuo Y et al (2020) Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 12(570):eabd3876. https://doi.org/10.1126/SCITRANSLMED.ABD3876

    Article  Google Scholar 

  15. Pandey R, Kumar M, Majdoubi J, Rahimi-Gorji M, Srivastav VK (2020) A review study on blood in human coronary artery: Numerical approach. Comput Methods Programs Biomed 187:105243. https://doi.org/10.1016/j.cmpb.2019.105243

    Article  Google Scholar 

  16. Carvalho V et al (2020) In vitro biomodels in stenotic arteries to perform blood analogues flow visualizations and measurements: a review. Open Biomed Eng 87–102. https://doi.org/10.2174/1874120702014010087

  17. LaDisa JF, Olson LE, Douglas HA, Warltier DC, Kersten JR, Pagel PS (2006) Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: Analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed Eng Online 5:1–11. https://doi.org/10.1186/1475-925X-5-40

    Article  Google Scholar 

  18. Kabinejadian F et al (2014) In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions. Med Eng Phys 36(10):1233–1245. https://doi.org/10.1016/j.medengphy.2014.06.024

    Article  Google Scholar 

  19. Hewlin RL, Kizito JP (2018) Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: ‘A Preliminary Framework Analysis.’ Cardiovasc Eng Technol 9(1):1–31. https://doi.org/10.1007/s13239-017-0332-z

    Article  Google Scholar 

  20. Park SM, Min YU, Kang MJ, Kim KC, Ji HS (2010) In vitro hemodynamic study on the stenotic right coronary artery using experimental and numerical analysis. J Mech Med Biol 10(4):695–712. https://doi.org/10.1142/S0219519410003812

    Article  Google Scholar 

  21. Souza A et al (2020) 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: Low cost fabrication processes. Mech Res Commun 107:103535. https://doi.org/10.1016/j.mechrescom.2020.103535

    Article  Google Scholar 

  22. Bento D, Lopes S, Maia I, Lima R, Miranda JM (2020) Bubbles moving in blood flow in a microchannel network: The effect on the local hematocrit. Micromachines 11(4):344. https://doi.org/10.3390/MI11040344

    Article  Google Scholar 

  23. Stepniak K, Ursani A, Paul N, Naguib H (2019) Development of a phantom network for optimization of coronary artery disease imaging using computed tomography. Biomed Phys Eng Express 5(4):45019. https://doi.org/10.1088/2057-1976/ab2696

    Article  Google Scholar 

  24. Sjostrand S, Widerstrom A, Ahlgren AR, Cinthio M (2017) Design and fabrication of a conceptual arterial ultrasound phantom capable of exhibiting longitudinal wall movement. IEEE Trans Ultrason Ferroelectr Freq Control 64(1):11–18. https://doi.org/10.1109/TUFFC.2016.2597246

    Article  Google Scholar 

  25. Papathanasopoulou P et al (2003) MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J Magn Reson Imaging 17(2):153–162. https://doi.org/10.1002/jmri.10243

    Article  Google Scholar 

  26. Chayer B et al (2019) Atherosclerotic carotid bifurcation phantoms with stenotic soft inclusions for ultrasound flow and vessel wall elastography imaging. Phys Med Biol 64(9):95025

    Article  Google Scholar 

  27. Goudot G et al (2021) Wall Shear Stress Measurement by Ultrafast Vector Flow Imaging for Atherosclerotic Carotid Stenosis. Ultraschall der Medizin 42(3):297–305. https://doi.org/10.1055/a-1060-0529

    Article  Google Scholar 

  28. Karimi A, Navidbakhsh M, Shojaei A, Faghihi S (2013) Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng C 33(5):2550–2554

    Article  Google Scholar 

  29. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S (2014) Study of plaque vulnerability in coronary artery using mooney-rivlin model: A combination of finite element and experimental method. Biomed Eng - Appl Basis Commun 26(1):1450013. https://doi.org/10.4015/S1016237214500136

    Article  Google Scholar 

  30. Santamore WP, Walinsky P, Bove AA, Cox RH, Carey RA, Spann JF (1980) The effects of vasoconstriction on experimental coronary artery stenosis. Am Heart J. 100(6) PART 1:852–858. https://doi.org/10.1016/0002-8703(80)90066-6.

  31. Friedman MH, Giddens DP (2005) Blood flow in major blood vessels - Modeling and experiments. Ann Biomed Eng. 33(12) SPEC ISS. 1710–1713, https://doi.org/10.1007/s10439-005-8773-1.

  32. Rezvan A, Ni CW, Alberts-Grill N, Jo H (2011) Animal, in vitro, and ex vivo models of flow-dependent atherosclerosis: Role of oxidative stress. Antioxidants Redox Signal 15(5):1433–1448. https://doi.org/10.1089/ars.2010.3365

    Article  Google Scholar 

  33. Yazdi SG, Geoghegan PH, Docherty PD, Jermy M, Khanafer A (2018) A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques. Ann Biomed Eng 46(11):1697–1721. https://doi.org/10.1007/s10439-018-2085-8

    Article  Google Scholar 

  34. Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in Silico Studies. Int J Mol Sci 15(3):4795–4822. https://doi.org/10.3390/ijms15034795

    Article  Google Scholar 

  35. Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G (2020) Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small 16(51):2003517. https://doi.org/10.1002/smll.202003517

    Article  Google Scholar 

  36. Carvalho V et al (2021) Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation. Comput Methods Biomech Biomed Engin 24(6):623–636. https://doi.org/10.1080/10255842.2020.1842377

    Article  Google Scholar 

  37. Pandey R, Kumar M, Srivastav VK (2020) Numerical computation of blood hemodynamic through constricted human left coronary artery: Pulsatile simulations. Comput Methods Programs Biomed 197:105661. https://doi.org/10.1016/j.cmpb.2020.105661

    Article  Google Scholar 

  38. Lopes D, Puga H, Teixeira JC, Teixeira SF (2019) Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies. Int J Mech Sci 160:209–218. https://doi.org/10.1016/j.ijmecsci.2019.06.029

    Article  Google Scholar 

  39. Elhanafy A, Elsaid A, Guaily A (2020) Numerical investigation of hematocrit variation effect on blood flow in an arterial segment with variable stenosis degree. J Mol Liq 313:113550

    Article  Google Scholar 

  40. Carvalho V, Carneiro F, Ferreira AC, Gama V, Teixeira JC, Teixeira S (2021) Numerical study of the unsteady flow in simplified and realistic iliac bifurcation models. Fluids 6(8):284. https://doi.org/10.3390/fluids6080284

    Article  Google Scholar 

  41. Carvalho V, Rodrigues N, Ribeiro R, Costa PF, Lima RA, Teixeira SFCF (2020) 3D printed biomodels for flow visualization in stenotic vessels: An experimental and numerical study. Micromachines 11(6):549. https://doi.org/10.3390/MI11060549

    Article  Google Scholar 

  42. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education. Harlow, England, Pearson, Prentice Hall, 1995

  43. Hoving AM, de Vries EE, Mikhal J, de Borst GJ, Slump CH (2020) A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation. Cardiovasc Eng Technol 11(2):111–127. https://doi.org/10.1007/s13239-019-00448-9

    Article  Google Scholar 

  44. Yilmaz F, Gundogdu MY (2008) A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Aust Rheol J 20(4):197–211

    Google Scholar 

  45. Lee J, Smith NP (2012) The multi-scale modelling of coronary blood flow. Ann Biomed Eng 40(11):2399–2413. https://doi.org/10.1007/s10439-012-0583-7

    Article  Google Scholar 

  46. Lieber BB, Siebes V, Yamaguchi T (2005) Correlation of hemodynamic events with clinical and pathological observations. Ann Biomed Eng. 33(12) SPEC ISS. 1695–1703. https://doi.org/10.1007/s10439-005-8760-6.

  47. Zhang JM et al (2014) Perspective on CFD studies of coronary artery disease lesions and hemodynamics: A review. Int J Numer Method Biomed Eng 30(6):659–680. https://doi.org/10.1002/cnm.2625

    Article  MathSciNet  Google Scholar 

  48. Chaichana T, Sun Z, Jewkes J (2012) Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput. Math. Methods Med. 2012. https://doi.org/10.1155/2012/504367.

  49. Shanmugavelayudam SK, Rubenstein DA, Yin W (2010) Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. J Biomech Eng 132:6. https://doi.org/10.1115/1.4001033

    Article  Google Scholar 

  50. Chaichana T, Sun Z, Jewkes J (2013) Hemodynamic impacts of left coronary stenosis: A patient-specific analysis. Acta Bioeng Biomech 15(3):107–112. https://doi.org/10.5277/abb130313

    Article  Google Scholar 

  51. Dabagh M, Takabe W, Jalali P, White S, Jo H (2013) Hemodynamic features in stenosed coronary arteries: CFD analysis based on histological images. J Appl Math. 2013. https://doi.org/10.1155/2013/715407.

  52. Kamangar S et al (2019) Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan. Biomed Mater Eng 30(4):463–473. https://doi.org/10.3233/BME-191067

    Article  Google Scholar 

  53. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209. https://doi.org/10.1007/s10439-010-0083-6

    Article  Google Scholar 

  54. Sriyab S (2014) Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries. Comput Math Methods Med 2014:479152. https://doi.org/10.1155/2014/479152

  55. Chen CX, Ding Y, Gear JA (2012) Numerical simulation of atherosclerotic plaque growth using two-way fluid-structural interaction. ANZIAM J 53(4):278–291. https://doi.org/10.1017/S1446181112000168

    Article  MathSciNet  Google Scholar 

  56. Razavi A, Shirani E, Sadeghi MR (2011) Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech 44(11):2021–2030. https://doi.org/10.1016/j.jbiomech.2011.04.023

    Article  Google Scholar 

  57. Mulani SS, Jagad PI (2015) Analysis of the Effects of Plaque Deposits on the Blood Flow through Human Artery. Int Eng Res J. 41(2):2319–3182. http://www.irdindia.in/journal_ijtarme/pdf/vol4_iss1/12.pdf

  58. Quarteroni A, Formaggia L, Veneziani A (2009) Cardiovascular Mathematics: modeling and simulation of the circulatory system (vol. 1). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-88-470-1152-6

  59. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29(1):399–434. https://doi.org/10.1146/annurev.fluid.29.1.399

    Article  MathSciNet  Google Scholar 

  60. Smith KA, Merchant SS, Hsu EW, Timmins LH (2021) Effect of Subject-Specific, Spatially Reduced, and Idealized Boundary Conditions on the Predicted Hemodynamic Environment in the Murine Aorta. Ann Biomed Eng 49(12):3255–3266. https://doi.org/10.1007/s10439-021-02851-7

    Article  Google Scholar 

  61. Gamage PT et al (2021) Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. In Computers Biol Med 139:104962. https://doi.org/10.1016/j.compbiomed.2021.104962

    Article  Google Scholar 

  62. Warey A, Gao J, Grover RO (2021) Generalization performance of a deep learning based engine-out emissions model. Energy AI 5:10008. https://doi.org/10.1016/j.egyai.2021.100080

    Article  Google Scholar 

  63. Settecase F, Rayz VL (2021) Advanced vascular imaging techniques. in Handbook Clin Neurol. 81–105. https://doi.org/10.1016/B978-0-444-64034-5.00016-X.

  64. Nannini G et al (2021) Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med 135:104581. https://doi.org/10.1016/j.compbiomed.2021.104581

    Article  Google Scholar 

  65. Starodumov IO et al (2022) Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. Philos Trans R Soc A Math Phys Eng Sci 380(2217):2217. https://doi.org/10.1098/rsta.2020.0303

    Article  Google Scholar 

  66. Nannini G et al (2021) Aortic hemo_dynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med 104581:135. https://doi.org/10.1016/j.compbiomed.2021.10458

    Article  Google Scholar 

  67. Hossain SS et al (2021) Image-based patient-specific flow simulations are consistent with stroke in pediatric cerebrovascular disease. Biomech Model Mechanobiol 20(6):2071–2084. https://doi.org/10.1007/s10237-021-01495-9

    Article  Google Scholar 

  68. Abazari MA, Rafieianzab D, Soltani M, Alimohammadi M (2021) The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: a virtual study. Sci Rep 11(1):41021–41598. https://doi.org/10.1038/s41598-021-95315-w

    Article  Google Scholar 

  69. Andelovic K, Winter P, Jakob PM, Bauer WR, Herold V, Zernecke A (2021) Evaluation of pla_que characteristics and inflammation using magnetic resonance imaging. Biomedicines 9(2):185. https://doi.org/10.3390/biomedicines9020185

    Article  Google Scholar 

  70. Y. Chen, J. Liu, and M. Li (2022) Non-invasive assessment of intracranial wall shear stress using high-resolution magnetic resonance imaging in combination with computational fluid dynamics technique. Fundam Res 2(2):2667–3258, 2021 https://doi.org/10.1016/j.fmre.2021.09.019

  71. Kadem M, Garber L, Abdelkhalek M, Al-Khazraji BK, Keshavarz-Motamed Z (2022) (2022) Hemodynamic mod_eling, medical imaging, and machine learning and their applications to cardiovascular interventions. IEEE Rev Biomed Eng 31420:403–423. https://doi.org/10.1109/RBME.2022.3142058

    Article  Google Scholar 

  72. Attia RM, Eldosoky MAA (2020) Studying of the Blood Flow behavior in a Stenosed Carotid Artery for Healthy, Anemic and Diabetic Blood,” in Proceedings of 2020 International Conference on Innovative Trends in Communication and Computer Engineering, ITCE 2020, 72–75. https://doi.org/10.1109/ITCE48509.2020.9047796.

Download references

Acknowledgements

The authors would like to thank Waleed, Mohammed Salem and Fawzi from Mechanical Engineering Dept., Cairo University. Also, Dr. Khaled Zakaria of the National Institute of Health (NIH) for providing the MRI dataset, and Dr. Mohammed Donya of the cardiovascular department, Nile Scan for CT data.

Funding

There is no funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Khosravi.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar, H., Ahmed, T., Rabie, R. et al. Modeling and computational fluid dynamics simulation of blood flow behavior based on MRI and CT for Atherosclerosis in Carotid Artery. Multimed Tools Appl 83, 56369–56390 (2024). https://doi.org/10.1007/s11042-023-17765-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17765-w

Keywords

Navigation