Skip to main content
Log in

An adaptive multichannel DeepLabv3 + for semantic segmentation of aerial images using improved Beluga Whale Optimization Algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Semantic segmentation of aerial images plays a pivotal role in extracting detailed information about land cover, infrastructure, and natural features. Traditional single-channel segmentation models struggle to harness the rich information present in multi-channel aerial images, such as multi-spectral or hyperspectral data. While the DeepLabV3 + architecture has shown remarkable success in semantic segmentation tasks by exploiting multi-scale context and atrous convolutions, its performance on aerial images remains suboptimal due to the unique challenges of this domain. With the motive of addressing the difficulties in the existing semantic segmentation techniques for aerial images, the adoption of deep learning techniques is utilized. A multi-objective derived Adaptive Multichannel deeplabv3 + (AMC-Deeplabv3 +) with a new meta-heuristic algorithm called Improved Beluga whale optimization (IBWO) algorithm is proposed in this paper. Here, the hyperparameters of Multichannel deeplabv3 + are optimized by the IBWO algorithm and this model intends to set new benchmarks in the accuracy and contextual understanding of aerial image segmentation by integrating multi-channel data processing techniques and preserving spatial context. The proposed model attains improved accuracies of 98.65% & 98.72% for dataset 1 and 2 respectively and also achieves the dice coefficient of 98.73% & 98.85% respectively, with a computation time of 113.0123 s. The evolutional outcomes of the proposed model show significantly better than the state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The data underlying this article are available in Semantic segmentation of aerial imagery “https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerialimagery?select=Semantic+segmentation+dataset”.

Aerial image segmentation dataset http://jiangyeyuan.com/ASD/Aerial%20Image%20Segmentation%20Dataset.html.

Notes

  1. https://www.kaggle.com/humansintheloop/semantic-segmentation-of-aerialimagery?select=Semantic+segmentation+datasetimagery?select=Semantic+segmentation+dataset

  2. http://jiangyeyuan.com/ASD/Aerial%20Image%20Segmentation%20Dataset.html

Abbreviations

CNN:

Convolutional Neural Networks

DCNN:

Deep Convolutional Neural Network

IBWO:

Improved Beluga whale optimization

FCN:

Fully Convolutional Neural Network

IRRG:

Infrared, Red, and Green

DRN:

Deep Residual Networks

DFCN:

Deep Fully Convolutional Network

CAM-DFCN:

Channel Attention Mechanism-Deep Fully Convolutional Neural Network

ASPP:

Atrous Spatial Pyramid Pooling

UAV:

Unmanned Aerial Vehicle

OSM:

Open Street Map

GAN:

Generative Adversarial Network

DSM:

Digital Surface Models

DSMF:

Digital Surface Models Fusion

FoV:

Field-of-View

VHR:

Very High Resolution

BWO:

Beluga Whale Optimization

GSO:

Glow-worm Swarm Optimization

BOA:

Butterfly Optimization Algorithm

COA:

Coyote Optimization Algorithm

References

  1. Chakravarthy AS, Sinha S, Narang P, Mandal M, Chamola V, Yu FR (2022) DroneSegNet: robust aerial semantic segmentation for UAV-Based IoT applications. IEEE Trans Veh Technol 71(4):4277–4286

    Article  Google Scholar 

  2. Esmael Agnaldo Aparecido, Santos Jefersson Alex Dos, da Silva Ricardo, Torres, (2018) On the ensemble of multiscale object-based classifiers for aerial images: a comparative study. Multimedia Tools Appl 77:24565–24592

    Article  Google Scholar 

  3. Khan SD, Alarabi L, Basalamah S (2023) Segmentation of farmlands in aerial images by deep learning framework with feature fusion and context aggregation modules. Multimed Tools Appl 1–20. https://doi.org/10.1007/s11042-023-14962-5

  4. Liu C, Wu Y, Liu J, Sun Z (2021) Improved YOLOv3 network for insulator detection in aerial images with diverse background interference. Electronics 10(7):771

    Article  Google Scholar 

  5. Hong Z et al (2022) Highway crack segmentation from unmanned aerial vehicle images using deep learning. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  6. Deng G, Wu Z, Wang C, Xu M, Zhong Y (2022) CCANet: class-constraint coarse-to-fine attentional deep network for subdecimeter aerial image semantic segmentation. IEEE Trans Geosci Remote Sens 60:1–20

    Article  Google Scholar 

  7. Anand T, Sinha S, Mandal M, Chamola V, Yu FR (2021) AgriSegNet: deep aerial semantic segmentation framework for IoT-assisted precision agriculture. IEEE Sens J 21(16):17581–17590

    Article  Google Scholar 

  8. Liu W, Zhang Y, Fan H, Zou Y, Cui Z (2020) A new multi-channel deep convolutional neural network for semantic segmentation of remote sensing image. IEEE Access 8:131814–131825

    Article  Google Scholar 

  9. Lee K, Kim JH, Lee H, Park J, Choi JP, Hwang JY (2022) Boundary-oriented binary building segmentation model with two scheme learning for aerial images. IEEE Trans Geosci Remote Sens 60:1–17

    Google Scholar 

  10. Li J, Sun B, Li S, Kang X (2022) Semisupervised semantic segmentation of remote sensing images with consistency self-training. IEEE Trans Geosci Remote Sens 60:1–11

    Google Scholar 

  11. Sun Y, Fu Z, Sun C, Hu Y, Zhang S (2022) Deep multimodal fusion network for semantic segmentation using remote sensing image and LiDAR data. IEEE Trans Geosci Remote Sens 60:1–18

    Article  Google Scholar 

  12. Zhang M, Xu G, Chen K, Yan M, Sun X (2019) Triplet-based semantic relation learning for aerial remote sensing image change detection. IEEE Geosci Remote Sens Lett 16(2):266–270

    Article  Google Scholar 

  13. Kaiser P, Wegner JD, Lucchi A, Jaggi M, Hofmann T, Schindler K (2017) Learning aerial image segmentation from online maps. IEEE Trans Geosci Remote Sens 55(11):6054–6068

    Article  Google Scholar 

  14. Manickam R, Kumar Rajan S, Subramanian C et al (2020) Person identification with aerial imaginary using SegNet based semantic segmentation. Earth Sci Inform 13:1293–1304

    Article  Google Scholar 

  15. Anilkumar P, Venugopal P (2022) Research contribution and comprehensive review towards the semantic segmentation of aerial images using deep learning techniques. Security and Communication Networks 1–32. https://doi.org/10.1155/2022/6010912

  16. Yadavendra, Chand S (2022) Semantic segmentation and detection of satellite objects using U-Net model of deep learning. Multimed Tools Appl 81(30):44291–44310

  17. Mou L, Hua Y, Zhu XX (2020) Relation matters: relational context-aware fully convolutional network for semantic segmentation of high-resolution aerial images. IEEE Trans Geosci Remote Sens 58(11):7557–7569

    Article  Google Scholar 

  18. Volpi M, Tuia D (2018) Deep multi-task learning for a geographically-regularized SSAI. ISPRS J Photogramm Remote Sens 144:48–60

    Article  Google Scholar 

  19. Chen K, Fu K, Yan M, Gao X, Sun X, Wei X (2018) SSAI with shuffling convolutional neural networks. IEEE Geosci Remote Sens Lett 15(2):173–177

    Article  Google Scholar 

  20. Luo H, Chen C, Fang L, Zhu X, Lu L (2019) High-resolution aerial images semantic segmentation using deep fully convolutional network with channel attention mechanism. IEEE J Select Topics Appl Earth Observ Remote Sens 12(9):3492–3507

    Article  Google Scholar 

  21. Cao Z et al (2019) End-to-end DSM fusion networks for semantic segmentation in high-resolution aerial images. IEEE Geosci Remote Sens Lett 16(11):1766–1770

    Article  Google Scholar 

  22. Girisha S, Verma U, ManoharaPai MM, Pai RM (2021) "UVid-Net: Enhanced Semantic segmentation of UAV aerial videos by embedding temporal information. IEEE J Selected Topics Appl Earth Observ Remote Sens 14:4115–4127

    Article  Google Scholar 

  23. Gupta A, Watson S, Yin H (2021) Deep learning-based aerial image segmentation with open data for disaster impact assessment. Neurocomputing 439:22–33

    Article  Google Scholar 

  24. Abdollahi A, Pradhan B, Sharma G, Maulud KNA, Alamri A (2021) Improving road semantic segmentation using generative adversarial network. IEEE Access 9:64381–64392

    Article  Google Scholar 

  25. He P, Jiao L, Shang R, Shuang Wang Xu, Liu DQ, Yang K, Zhao D (2022) MANet: Multi-scale aware-relation network for semantic segmentation in aerial scenes. IEEE Trans Geosci Remote Sens 60:1–15

    Article  Google Scholar 

  26. Huang Z, Zhang Q, Zhang G (2022) MLCRNet: Multi-level context refinement for semantic segmentation in aerial images. Remote Sensing 14(6):1498

    Article  Google Scholar 

  27. Diao Qi, Dai Y, Zhang Ce, Yan Wu, Feng X, Pan F (2022) Superpixel-based attention graph neural network for semantic segmentation in aerial images. Remote Sensing 14(2):305

    Article  Google Scholar 

  28. Akbari Y, Al-Maadeed S, Adam K (2020) Binarization of degraded document images using convolutional neural networks and wavelet-based multichannel images. IEEE Access 8:153517–153534

    Article  Google Scholar 

  29. Sudo Y, Itoyama K, Nishida K, Nakadai K (2020) Multi-channel environmental sound segmentation. In 2020 IEEE/SICE International Symposium on System Integration (SII), pp. 820–825. IEEE

  30. Yao X, Guo Q, Li A (2021) Light-weight cloud detection network for optical remote sensing images with attention-based deeplabv3+ architecture. Remote Sensing 13(18):3617

    Article  Google Scholar 

  31. Abro GEM (2022) Hand gesture-based control of autonomous UAV for mobile disinfectant dispenser. in 2022 international conference on future trends in smart communities (ICFTSC) (pp. 218–222). IEEE

  32. Israr Ambar, Mustafa Ghulam E, Abro M. Sadiq, Khan Ali, Farhan Muhammad, SaifulAzrin Bin MohdZulkifli, (2021) Internet of things (IoT)-Enabled unmanned aerial vehicles for the inspection of construction sites: a vision and future directions. Math Problems Eng 2021:1–15

    Google Scholar 

  33. Chakravarthy Anirudh S, Sinha Soumendu, Narang Pratik, Mandal Murari, Chamola Vinay, Yu F Richard (2022) DroneSegNet: robust aerial semantic segmentation for uav-based iot applications. IEEE Trans Vehicular Technol 71(4):4277–4286

    Article  Google Scholar 

  34. Behera Tanmay Kumar, Bakshi Sambit, Sa Pankaj Kumar (2023) A lightweight deep learning architecture for vegetation segmentation using UAV-captured aerial images. Sustain Comput: Inform Syst 37:100841

    Google Scholar 

  35. Behera TK, Bakshi S, Nappi M, Sa PK (2023) Superpixel-based multiscale CNN approach toward multiclass object segmentation from UAV-captured aerial images. IEEE J Selected Topics Appl Earth Observ Remote Sens 16:1771–1784

  36. Zhong C, Li G, Meng Z (2022) Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowledge-Based Syst 251

  37. Zhou H, Cheng H-Y, Wei Z-L, Zhao X, Tang A-D, Xie L (2021) A hybrid butterfly optimization algorithm for numerical optimization problems. Comput Intell Neurosci 2021:14

    Article  Google Scholar 

  38. Chang GW, Cong Chinh N (2020) Coyote optimization algorithm-based approach for strategic planning of photovoltaic distributed generation. IEEE Access 8:36180–36190

    Article  Google Scholar 

  39. Zainal N, Zain AM, Radzi NH, Udin A (2013) Glowworm swarm optimization (GSO) algorithm for optimization problems: a state-of-the-art review. Appl Mech Mater 421:507–511

    Article  Google Scholar 

  40. Ulmas P, Liiv I (2020) Segmentation of satellite imagery using u-net models for land cover classification. arXiv preprint arXiv:2003.02899

  41. Akcay O, Kinaci AC, Avsar EO, Aydar U (2022) Semantic segmentation of high-resolution airborne images with dual-stream deeplabv3+. ISPRS Int J Geo Inf 11(1):23

  42. Masayoshi K, Katada Y, Ozawa N, Ibuki M, Negishi K, Kurihara T (2022) Automatic segmentation of non-perfusion area from fluorescein angiography using deep learning with uncertainty estimation. Informatics in Medicine Unlocked 32:101060

  43. Anilkumar P, Venugopal P (2023) An enhanced multi-objective-derived adaptive deeplabv3 using g-rda for semantic segmentation of aerial images. Arab J Sci Eng 1–25

Download references

Funding

This research work received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, V.P; methodology, V.P; software, A.P.; validation, A.P; investigation, A.P; resources, V.P and A.P; writing—original draft preparation, A.P; writing—review and editing, V.P; visualization, V.P; supervision, V.P;

Corresponding author

Correspondence to P. Venugopal.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anilkumar, P., Venugopal, P. An adaptive multichannel DeepLabv3 + for semantic segmentation of aerial images using improved Beluga Whale Optimization Algorithm. Multimed Tools Appl 83, 46439–46478 (2024). https://doi.org/10.1007/s11042-023-17247-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17247-z

Keywords

Navigation