Skip to main content
Log in

A Review of Single Image Super Resolution Techniques using Convolutional Neural Networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Single Image Super- Resolution (SISR) is a complex restoration method to recover high-resolution (HR) image from degraded low-resolution (LR) form. SISR is used in many applications, such as microscopic image analysis, medical imaging, security and surveillance, astronomical observation, hyperspectral imaging, and text image super-resolution. Convolutional Neural Networks (CNNs) are most widely used technique to solve Super-Resolution (SR) problems. This paper presents review of SISR methods based on CNN. The SISR CNN models are analyzed based on the design and their performance on benchmark datasets: Set 5, Set 14, BSD 100, and Urban 100. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) are used for quantitative analysis. ESRGAN model shows the best results on all benchmark datasets and reconstructs images with good visual quality at large upscaling factors. The model performs excellently with PSNR 27.03 dB and SSIM 0.8153 on the Urban 100 dataset for ×4 upscaling factor. The models are further analyzed on the basis of the loss function, scalability, processing time, and number of parameters. The framework and implementation setup of SISR CNN models are also discussed. Perceptual loss function can help to boost the network performance by increasing the visual quality of the reconstructed images. Hence, it has emerged as a new research trend in recent years. It is also observed that there is tremendous growth in the field of blind or unsupervised SISR. The research has shifted to developing reference less performance evaluation parameters for unsupervised SISR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

NA

Code Availability

NA

References

  1. Yuan Y, Zheng X, Lu X (2017) Hyperspectral image super resolution by transfer learning. IEEE J Select Top Appl Earth Observ Remote Sens 10(5):1963–1974

    Article  ADS  Google Scholar 

  2. Li Y, Hu J, Zhao X, Tao R (2017) Hyperspectral image super-resolution using deep convolutional neural network. Neurocomputing. 266:29–41

    Article  Google Scholar 

  3. Ribeiro E, Uhl FF (2019) Iris super-resolution using CNNs: photo-realism important to iris recognition. IET Biometrics 8(1):69–78

    Article  Google Scholar 

  4. Bisen D, Shukla R, Rajpoot N (2022) Responsive human-computer interaction model based on recognition of facial landmarks using machine learning algorithms. Multimed Tools Appl 81:18011–18031. https://doi.org/10.1007/s11042-022-12775-6

    Article  Google Scholar 

  5. Sharma A, Shrivastava BP (2023) Facial image super-resolution using progressive network interleaved correlation filter. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-14765-8

  6. Pham C, Ducournau A, Fablet R, Rousseau F (2017) Brain MRI super-resolution using deep 3D convolutional networks. Proc. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp.187-200

  7. Khan A, Khan M, Obaid F, Jadoon S, Khan MA, Sikandar M (2015) A novel multi-frame super resolution algorithm for surveillance camera image reconstruction. Proc. 2015 First International Conf. on Anti-Cybercrime (ICACC), pp. 1-6

  8. Tang J, Huang C, Zhu H, Liu J (2020) Image Super-Resolution Based on CNN Using Multilabel Gene Expression Programming. Appl Sci 10(3):854–868

    Article  Google Scholar 

  9. Zhang H, Liu D, Xiong Z (2017) CNN-based text image super-resolution tailored for OCR, Proc. 2017 IEEE Visual Communications and Image Process. (VCIP), pp. 1-4

  10. Duchon C (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Article  Google Scholar 

  11. Sun J, Sun J, Xu Z, Shum H (2011) Gradient Profile Prior and Its Applications in Image Super-Resolution and Enhancement. IEEE Trans Image Process 20(6):1529–1542

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  12. Freeman W, Jones T, Pasztor E (2002) Example based super resolution. IEEE Comput Graph Appl 22(2):56–65

    Article  Google Scholar 

  13. Dai S, Han M, Xu W, Wu Y (2009) Soft cuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans Image Process 18(5):969–981

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  14. Sun J, Xu Z, Shum H (2008) Image super-resolution using gradient profile prior. Proc. Computer Vision and Pattern Recognition , Anchorage, AK, pp. 1-8

  15. Yan Q, Xu Y, Yang X, Nguyen T (2015) Single image super resolution based on gradient profile sharpness. IEEE Trans Image Process 24(10):3187–3202

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  16. Shukla AK, Pandey RK (2021) Yadav S (2021) Adaptive fractional masks and super resolution based approach for image enhancement. Multimed Tools Appl 80:30213–30236. https://doi.org/10.1007/s11042-020-08968-6

    Article  Google Scholar 

  17. Hu J, Luo Y (2015) Noise-robust video super-resolution using an adaptive spatial-temporal filter. Multimed Tools Appl 74:9259–9278. https://doi.org/10.1007/s11042-014-2079-y

    Article  Google Scholar 

  18. Gupta S, Sharma DK, Ranta S (2022) A new hybrid image enlargement method using singular value decomposition and cubic spline interpolation. Multimed Tools Appl 81:4241–4254

    Article  Google Scholar 

  19. Freedman G, Fattal R (2011) Image and video upscaling from local self-examples. ACM Trans. on. Graphics (TOG) 12(8):651–664

    Google Scholar 

  20. Wang Z, Yang Y, Wang Z, Chang S, Yang J, Huang T (2015) Learning super-resolution jointly from external and internal examples. IEEE Trans Image Process 24(11):4359–4371

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  21. Guo F, Zhang C, Zhang M (2021) Hyperspectral image super-resolution through clustering-based sparse representation. Multimed Tools Appl 80:7351–7366. https://doi.org/10.1007/s11042-020-09952-w

    Article  Google Scholar 

  22. Hardiansyah B, Lu Y (2021) Single image super-resolution via multiple linear mapping anchored neighborhood regression. Multimed Tools Appl 80:28713–28730. https://doi.org/10.1007/s11042-021-11062-0

    Article  Google Scholar 

  23. Hou M, Feng Z, Wang H (2022) An adaptive regression based single-image super-resolution. Multimed Tools Appl 81:28231–28248. https://doi.org/10.1007/s11042-022-12911-2

    Article  Google Scholar 

  24. Yang X, Wu W, Lu L (2020) Multiple Regressions based Image Super-resolution. Multimed Tools Appl 79:8911–8927. https://doi.org/10.1007/s11042-019-7716-z

    Article  Google Scholar 

  25. Zhang K, Zuo W, Zhang L (2018) FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Trans Image Process 27(9):4608–4621

    Article  ADS  MathSciNet  Google Scholar 

  26. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks, Neural Information Processing Systems, 1097-1105

  27. Bhuyan HK Ravi V (2021) Analysis of Subfeature for Classification in Data Mining IEEE Trans Eng Manage. 1-16. https://doi.org/10.1109/TEM.2021.3098463

  28. Bhuyan HK, Chakraborty C, Shelke Y, Pani SK (2021) COVID-19 diagnosis system by deep learning approaches. Expert Systems 39(3):1-18 https://doi.org/10.1111/exsy.12776

  29. Bhuyan HK, Chakraborty C (2022) Explainable Machine Learning for Data Extraction Across Computational Social System. IEEE Trans Comput Social Syst 99:1–15. https://doi.org/10.1109/TCSS.2022.3164993

    Article  Google Scholar 

  30. Bhuyan HK, Ravi V, Yadav MS (2022) Multi-objective optimization-based privacy in data mining. Cluster Comput 25:4275–4287. https://doi.org/10.1007/s10586-022-03667-3

  31. Mishra J, Goyal S (2022) An effective automatic traffic sign classification and recognition deep convolutional networks. Multimed Tools Appl 81:18915–18934. https://doi.org/10.1007/s11042-022-12531-w

    Article  Google Scholar 

  32. Salau AO, Jain S (2019) Feature Extraction: A Survey of the Types, Techniques, Applications. 2019 International Conference on Signal Processing and Communication (ICSC), pp. 158-164. doi: https://doi.org/10.1109/ICSC45622.2019.8938371

  33. Mutlag WK, Ali SK, Aydam ZM, Taher BH (2020) Feature Extraction Methods: A Review. The Fifth International Scientific Conference of Al-Khwarizmi. 1591, 012028. https://doi.org/10.1088/1742-6596/1591/1/012028

  34. Dong C, Loy C, He K, Tang X (2016) Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Patt Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  35. Kim J, Lee J, Lee K (2016) Accurate Image Super-Resolution Using Very Deep Convolutional Networks. Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1646-1654

  36. Zhang K, Zuo W, Gu S, Zhang L (2017) Learning Deep CNN Denoiser Prior for Image Restoration. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2808-2817

  37. Zhang K, Zuo W, Chen Y (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  38. Mao X, Shen C, Yang Y (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Proc. Neural Information Process. System, pp. 2810–2818

  39. Kim J, Lee J, Lee K (2016) Deeply-Recursive Convolutional Network for Image Super-Resolution. Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1637-1645

  40. Tai Y, Yang J, Liu X (2017) Image Super-Resolution via Deep Recursive Residual Network. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2790-2798

  41. Jiao J, Tu W, He S, Lau RWH (2017) FormResNet: Formatted Residual Learning for Image Restoration. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1034-1042

  42. Tai Y, Yang J, Liu X, Xu C (2017) MemNet: A persistent memory network for image restoration. Proc.Computer Vision Pattern Recognition. Venice, pp. 4539-4547

  43. Han W, Chang S, Liu D, Yu M, Witbrock M, Huang S (2018) Image super-resolution via dual-state recurrent networks. Proc. Computer Vision PatternRecognition, pp.1654-1663

  44. Hu Y, Gao X., Li J, Huang Y, Wang H (2018) Single image super resolution via cascaded multi-scale cross network. Proc. Computer Vision Pattern Recognition, pp.512-531

  45. Ren H, Khamy M, Lee J (2017) Image Super Resolution Based on Fusing Multiple Convolution Neural Networks. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.1050-1057

  46. Dong C, Loy C, Tang X (2016) Accelerating the super resolution convolutional neural network. Proc. European Conf. on Computer Vision, pp.1187-1202

  47. Fan Y, Shi H, Yu J, Liu D (2017) Balanced two-stage residual networks for image super-resolution. Proc. Computer Vision Pattern Recognition, pp. 1157-1164

  48. Tong T, Li G, Liu, X, Gao Q (2017) Image Super-Resolution using Dense Skip Connections. Proc. 2017 IEEE International Conf. on Computer Vision (ICCV), pp. 4809-4817

  49. Hui Z, Wang X, Gao X (2018) Fast and accurate single image super-resolution via information distillation network. Proc. Computer Vision Pattern Recognition, pp.723-731

  50. Shi W, Caballero J, Huszár F, Totz J, Aitken A, Bishop R, Rueckert D, Wang Z (2016) Real-Time Single Image and Video Super-Resolution using an Efficient Sub-Pixel Convolutional Neural Network. Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1874-1883

  51. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta, A, Aitken A (2017) Photo-Realistic Single Image Super-Resolution using a Generative Adversarial Network. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.105-114

  52. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018) Residual Dense Network for Image Super-Resolution. Proc. 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 2472-2481

  53. Lim B, Son S, Kim H, Nah S, Lee K (2017) Enhanced deep residual networks for single image super-resolution. Proc. Computer Vision Pattern Recognition, International Conf. on Computer Vision, pp. 136-144

  54. Park S, Son H, Cho S, Hong K, Lee S (2018) SRFeat: Single image super-resolution with feature discrimination. Proc. International Conf. on Computer Vision, pp. 439-455

  55. Guo D, Niu Y, Xie P (2019) Speedy and accurate image super-resolution via deeply recursive CNN with skip connection and network in network. IET Image Process 13(7):1201–1209

    Article  Google Scholar 

  56. Yamanaka J (2020) Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. Computer vision and pattern recognition, pp.456-471

  57. Zhang K, Zuo W, Zhang L (2018) Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City. UT, pp. 3262-3271

  58. Mei S, Jiang R, Li X, Du Q (2020) Spatial and Spectral Joint Super-Resolution Using Convolutional Neural Network. IEEE Trans Geosci Remote Sens 58(7):4590–4603

    Article  ADS  Google Scholar 

  59. Lai W, Huang J, Ahuja N, Yang M (2017) Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 5835-5843

  60. Wang Y, Perazzi F, McWilliams B (2018) A fully progressive approach to single-image super-resolution. Proc. Computer Vision Pattern Recognition, pp. 977-986

  61. Haris M, Shakhnarovich G, Ukita N (2018) Deep Back-Projection Networks for Super-Resolution. Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1664-1673

  62. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc. IEEE Computer Vision and Pattern Recognition, pp. 770–778

  63. Ahn N, Kang B, Sohn K (2018) Fast, accurate, and, lightweight super-resolution with cascading residual network. Proc. Computer Vision Pattern Recognition, pp. 256-272

  64. Li J, Fang F, Mei K (2018) Multi-scale residual network for image super-resolution. Proc. International Conference on Computer Vision, pp. 517-532

  65. Lan R, Sun L, Liu Z, Su Z, Lu H (2020) Cascading and Enhanced Residual Networks for Accurate Single-Image Super-Resolution, IEEE Trans. on Cybernetics, pp. 1-11. doi: https://doi.org/10.1109/TCYB.2019.2952710

  66. Liu Z, Yuan L, Sun L (2022) Frequency separation-based multi-scale cascading residual block network for image super resolution. Multimed Tools Appl 81:6827–6848

    Article  Google Scholar 

  67. Ahmadian K, Reza Alikhani H (2022) Single image super-resolution with self-organization neural networks and image laplace gradient operator. Multimed Tools Appl 81:10607–10630

    Article  Google Scholar 

  68. Song Z, Zhao X, Jiang H (2021) Gradual deep residual network for super-resolution. Multimed Tools Appl 80:9765–9778

    Article  Google Scholar 

  69. Barzegar S, Sharifi A, Manthouri M (2020) Super-resolution using lightweight detailnet network. Multimed Tools Appl 79:1119–1136. https://doi.org/10.1007/s11042-019-08218-4

    Article  Google Scholar 

  70. Peng Y (2020) Super-resolution Reconstruction Using Multiconnection Deep Residual Network Combined an Improved Loss Function for Single-frame Image. Multimed Tools Appl 79:9351–9362

    Article  Google Scholar 

  71. Wen R, Fu K, Sun H, Sun X (2018) Image Super resolution Using Densely Connected Residual Networks. IEEE Signal Process. Letters. 25(10):1565–1569

    Google Scholar 

  72. Hu S, Wang G, Wang Y (2020) Accurate image super-resolution using dense connections and dimension reduction network. Multimed Tools Appl 79(5):1427–1443

    Article  Google Scholar 

  73. Lan R, Sun L, Liu Z, Lu H, Pang C, Luo X (2020) MADNet: A Fast and Lightweight Network for Single-Image Super Resolution. IEEE Trans Cybern 63(7):2256–2284

    Google Scholar 

  74. Sajjadi M, Scholkopf B, Hirsch M (2017) Enhancenet: Single image super-resolution through automated texture synthesis. Proc. International Conf. on Computer Vision. pp. 4491-4500 doi: arXiv:1612.07919

  75. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Loy C (2018) ESRGAN: Enhanced super-resolution generative adversarial networks. Proc. Computer Vision Pattern Recognition, pp.63-79

  76. Shocher A, Cohen N, Irani M. (2017) Zero-shot super-resolution using deep internal learning. Proc. Computer Vision Pattern Recognition, pp. 3118-3126. doi: arXiv:1712.06087

  77. Yi Z, Zhang H, Tan P, Gong M (2017) DualGAN: Unsupervised dual learning for image-to-image translation, Proc. Computer Vision Pattern Recognition, pp.2849-2857

  78. Zhu J, Park T, Isola P, Efros A (2017) Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. Proc. 2017 IEEE International Conf. on Computer Vision, pp. 2242-2251

  79. Yuan Y, Liu S, Zhang J, Zhang Y, Dong C, Lin L (2018) Unsupervised Image Super-Resolution Using Cycle-in-Cycle Generative Adversarial Networks. Proc. 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 814-824

  80. Zhang Y, Li K, Wang L, Zhong B, Fu Y (2018) Image super resolution using very deep residual channel attention networks. Proc. Computer Vision Pattern Recognition, pp.294-310.

  81. Choi J, Kim M (2017) A Deep Convolutional Neural Network with Selection Units for Super-Resolution. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) Honolulu HI, pp. 1150-1156

  82. Kim J, Choi J, Cheon M (2018) RAM: Residual attention module for single image super-resolution, Proc. Computer Vision Pattern Recognition, 886-895

  83. Wu H, Zou Z, Gui J (2019) Multi-grained Attention Networks for Single Image Super Resolution. IEEE Trans Circuits Syst Video Technol 5(11):567–587

    Google Scholar 

  84. Ying W, Dong T, Shentu C (2023) Accurate stereo image super-resolution using spatial-attention-enhance residual network. Multimed Tools Appl 82:12117–12133. https://doi.org/10.1007/s11042-022-13815-x

    Article  Google Scholar 

  85. Wang Y, Li X, Nan F (2022) Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms. Multimed Tools Appl 81:6633–6652. https://doi.org/10.1007/s11042-021-11679-1

    Article  Google Scholar 

  86. Oord A, Kalchbrenner N (2016) Conditional image generation with pixelcnn decoders. Proc. Neural Information Process. System, pp.4797–4805

  87. Oord A, Kalchbrenner N, Kavukcuoglu K (2016) Pixel recurrent neural networks, Proc. 33rd International Conf. on Machine Learning, pp. 1747–1756

  88. Salimans T, Karpathy A, Chen X., Kingma D (2017) PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. International Conf. on Learning Representations, pp.236-248

  89. Huang H, He R, Sun Z, Tan T (2017) Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution. Proc. 2017 IEEE International Conf. on Computer Vision (ICCV), pp.1698-1706

  90. Liu P, Zhang H, Zhang K, Lin L, Zuo W (2018) Multi-level wavelet-CNN for image restoration. Proc. Computer Vision Pattern Recognition, pp. 886-895

  91. Guo T, Mousavi H, Vu T, Monga V (2017) Deep Wavelet Prediction for Image Super-Resolution. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, pp. 1100-1109

  92. Russakovsky O, Deng J, Berg A, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  93. Bevilacqua M, Roumy A, Guillemot C, Morel M (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding, Proc. British Machine Vision Conf., pp. 1-10

  94. Zeyde R, Elad M, Protter M (2010) On single image scale-up using sparse representations, Proc. International conf. on curves and surfaces, Berlin, Heidelberg, pp. 711-730

  95. Huang J, Singh A, Ahuja N (2015) Single image super resolution from transformed self-exemplars, Proc. Computer Vision Pattern Recognition, pp. 5197-5206

  96. Timofte R, Smet V, Gool L (2017) NTIRE 2017 challenge on single image super-resolution: methods and results, Proc. Computer Vision Pattern Recognition, pp. 1110-1121

  97. Martin D, Fowlkes C, Tal D (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proc. International Conf. on Computer Vision, pp. 416-423

  98. Fujimoto A, Ogawa T, Yamamoto K. (2016) Manga109 dataset and creation of metadata, Proc. International Workshop on Analysis, Process. and Understanding, pp. 1-5

  99. Yang C, Ma C, Yang M (2014) Single-image super-resolution: A benchmark. Proc. European Conf. Computer Vision. Zurich. Switzerland. September, pp.372–386

  100. Wang Z, Bovik A, Sheikh H (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(11):600–612

    Article  ADS  PubMed  Google Scholar 

  101. Wang Z, Simoncelli E (2003) A.:Multiscale structural similarity for image quality assessment. The Thrity-Seventh Asilomar Conf. on Signals, Systems & Computers, pp. 1398-1402.

  102. Venkata N, Kite T, Geisler W (2000) Image quality assessment based on a degradation model. IEEE Trans Image Process 9(11):636–650

    Article  ADS  Google Scholar 

  103. Sheikh H, Bovik A, Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(11):2117–2128

    Article  ADS  PubMed  Google Scholar 

  104. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  ADS  Google Scholar 

  105. Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  106. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  107. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352. https://doi.org/10.1109/TIP.2012.2191563

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  108. Moorthy AK, Bovik A (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364. https://doi.org/10.1109/TIP.2011.2147325

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  109. Greeshma MS, Bindu VR (2020) Super-resolution Quality Criterion (SRQC): a super-resolution image quality assessment metric. Multimed Tools Appl 79:35125–35146

    Article  Google Scholar 

  110. Bruna J, Sprechmann P, LeCun Y (2016) Super-resolution with deep convolutional sufficient statistics. International conference on learning representations (ICLR)

  111. Wu Q, Fan C, Li Y (2020) A novel perceptual loss function for single image super-resolution. Multimed Tools Appl 79:21265–21278. https://doi.org/10.1007/s11042-020-08878-7

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to express their gratitude to the anonymous reviewers for their insightful and productive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dixit.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, M., Yadav, R.N. A Review of Single Image Super Resolution Techniques using Convolutional Neural Networks. Multimed Tools Appl 83, 29741–29775 (2024). https://doi.org/10.1007/s11042-023-16786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16786-9

Keywords

Navigation