Skip to main content
Log in

Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Exposure to UV rays due to global warming can lead to sunburn and skin damage, ultimately resulting in skin cancer. Early prediction of this type of cancer is crucial. A detailed review in this paper explores various algorithms, including machine learning (ML) techniques as well as deep learning (DL) techniques. While deep learning strategies, particularly CNNs, are commonly employed for skin cancer identification and classification, there is also some usage of machine learning and hybrid approaches. These techniques have proven to be effective classifiers of skin lesions, offering promising results for early detection. The paper analyzes various researchers’ reviews on skin cancer diagnosis to identify a suitable methodology for improving diagnostic accuracy. A publicly available dataset of dermoscopic images retrieved from the ISIC archive has been trained and evaluated. Performance analysis is done, considering metrics such as test and validation accuracy. The results indicate that the RF(random forest) algorithm outperforms other machine learning algorithms in both scenarios, with accuracies of 58.57% without augmentation and 87.32% with augmentation. MobileNetv2, ensemble of Dense Net and Inceptionv3 exhibit superior performance. During training without augmentation, MobileNetv2 achieves an accuracy of 88.81%, while the ensemble model achieves an accuracy of 88.80%. With augmentation techniques applied, the accuracies improved to 97.58% and 97.50%, respectively. Furthermore, experiment with a customized convolutional neural network (CNN) model was also conducted, varying the number of layers and applying various hyperparameter tuning methodologies. Suitable architectures, including a CNN with 7 layers and batch normalization, a CNN with 5 layers, and a CNN with 3 layers were identified. These models achieved accuracies of 77.92%, 97.72%, and 98.02% on the raw data and augmentation datasets, respectively. The experimental results suggest that these techniques hold promise for integration into clinical settings, and further research and validation are necessary. The results highlight the effectiveness of transfer learning models, in achieving high accuracy rates. The findings support the future adoption of these techniques in clinical practice, pending further research and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Addi - automatic computer-based diagnosis system for dermoscopy images (n.d.) Retrieved January 7, 2023, from https://www.fc.up.pt/addi/

  2. Adegun AA, Viriri S (2020) FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access 8:150377–150396. https://doi.org/10.1109/access.2020.3016651

    Article  Google Scholar 

  3. Adjed F, Faye I, Ababsa F, Gardezi SJ, Dass SC (2016) Classification of skin cancer images using local binary pattern and SVM classifier. AIP Conf Proc 10(1063/1):4968145

    Google Scholar 

  4. Admisysrg, Admisysrg, 23, P. R. L. A., 30, admisysrg Author O, Author, & 30, celebrities A. (2020). Skin lesion classification based on deep ensemble Convolutional Neural Network. ISYSRG. https://isysrg.com/2020/06/17/deep-ensemble-learning-for-skin-lesions-classification-with-convolutional-neural-network/

  5. Agarwal K, Singh T (2022) Classification of skin cancer images using convolutional neural networks. SSRN Electronic J. https://doi.org/10.2139/ssrn.4055037

    Article  Google Scholar 

  6. Al-Issa Y, Alqudah AM (2022) A lightweight hybrid deep learning system for cardiac valvular disease classification. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-18,293-7

  7. Alqudah AM, Algharib HM, Algharib AM, Algharib HM (2019) Computer aided diagnosis system for automatic two stages classification of Breast Mass in digital mammogram images. Biomed Eng Appl Basis Commun 31(01):1950007. https://doi.org/10.4015/s1016237219500078

    Article  Google Scholar 

  8. Alqudah AM, Alquran H, Qasmieh IA (2020) Classification of heart sound short records using Bispectrum analysis approach images and deep learning. Netw Model Anal Health Inform Bioinform 9(1). https://doi.org/10.1007/s13721-020-00272-5

  9. Alqudah AM, Qazan S, Al-Ebbini L, Alquran H, Qasmieh IA (2021) ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures. J Ambient Intell Humaniz Comput 13(10):4877–4907. https://doi.org/10.1007/s12652-021-03247-0

    Article  Google Scholar 

  10. Alqudah A, Alqudah AM, Alquran H, Al-Zoubi HR, Al-Qodah M, Al-Khassaweneh MA (2021) Recognition of handwritten Arabic and Hindi numerals using convolutional neural networks. Appl Sci 11(4):1573. https://doi.org/10.3390/app11041573

    Article  Google Scholar 

  11. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175. https://doi.org/10.2307/2685209

    Article  MathSciNet  Google Scholar 

  12. Auxilia Osvin Nancy V, Arya MS, Shamreen Ahamed B (2022) Automated seven-level skin cancer staging diagnosis in dermoscopic images using Deep Learning. Machine Learning and Artificial Intelligence in Healthcare Systems, 93–109. https://doi.org/10.1201/9781003265436-4

  13. Babu GNK, Peter VJ (2021) Skin cancer detection using support vector machine with histogram of oriented gradients features. ICTACT J Soft Comput 11(02):2229–6956 (Online). https://doi.org/10.21917/Ijsc.2021.0329

  14. Bansal P, Vanjani A, Mehta A, Kavitha JC, Kumar S (2022) Improving the classification accuracy of melanoma detection by performing feature selection using Binary Harris Hawks optimization algorithm. Soft Comput 26(17):8163–8181. https://doi.org/10.1007/s00500-022-07234-1

    Article  Google Scholar 

  15. Bansal P, Garg R, Soni P (2022) Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted and deep learning models. Comput Ind Eng 168(108):060. https://doi.org/10.1016/j.cie.2022.108060

    Article  Google Scholar 

  16. Camacho-Gutiérrez JA, Solorza-Calderón S, Álvarez-Borrego J (2022) Multi-class skin lesion classification using prism- and segmentation-based fractal signatures. Expert Syst Appl 197(116):671. https://doi.org/10.1016/j.eswa.2022.116671

    Article  Google Scholar 

  17. Cancer Facts and Figs. 2021. [online]. Available: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html. Accessed 28 Apr 2021

  18. Carvajal DC, Delgado BM, Ibarra DG, Ariza LC (2022) Skin cancer classification in dermatological images based on a dense hybrid algorithm. In: 2022 IEEE XXIX international conference on electronics, electrical engineering and computing (INTERCON). https://doi.org/10.1109/intercon55795.2022.9870129

    Chapter  Google Scholar 

  19. Chaturvedi SS, Gupta K, Prasad PS (2020) Skin lesion analyser: An efficient seven-way multi-class skin cancer classification using MobileNet. Adv Intell Syst Comput 165–176. https://doi.org/10.1007/978-981-15-3383-9_15

  20. Chen X, Yuan H, Li. (2019) Research on a real-time monitoring method for the Wear State of a tool based on a convolutional bidirectional LSTM model. Symmetry 11(10):1233. https://doi.org/10.3390/sym11101233

    Article  Google Scholar 

  21. Codella NC, Nguyen Q-B, Pankanti S, Gutman DA, Helba B, Halpern AC, Smith JR (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61(4/5). https://doi.org/10.1147/jrd.2017.2708299

  22. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). https://doi.org/10.1109/isbi.2018.8363547

    Chapter  Google Scholar 

  23. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Apple Books. Retrieved January 7, 2023, from https://books.apple.com/us/book/an-introduction-to-support-vector-machines-and/id811960631?l=vi

  24. de Ville B (2013) Decision trees. Wiley Interdiscip Rev Comput Stat 5(6):448–455. https://doi.org/10.1002/wics.1278

    Article  Google Scholar 

  25. DeVries T, Ramachandram D Skin lesion classification using deep multi-scale convolutional neural networks. arXiv 2017, arXiv:1703.01402. Available online: http://arxiv.org/abs/1703.01402. Accessed 6 Sept 2021

  26. Diwan T, Shukla R, Ghuse E, Tembhurne JV (2022) Model hybridization & learning rate annealing for skin cancer detection. Multimed Tools Appl 82(2):2369–2392. https://doi.org/10.1007/s11042-022-12,633-5

    Article  Google Scholar 

  27. Dorj U-O, Lee K-K, Choi J-Y, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimed Tools Appl 77(8):9909–9924. https://doi.org/10.1007/s11042-018-5714-1

    Article  Google Scholar 

  28. dshahid380 (2019) Convolutional Neural Network. Medium. Retrieved January 7, 2023, from https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

  29. Duarte AF, Sousa-Pinto B, Azevedo LF, Barros AM, Puig S, Malvehy J, Haneke E, Correia O (2021) Clinical ABCDE rule for early melanoma detection. Eur J Dermatol 31(6):771–778. https://doi.org/10.1684/ejd.2021.4171

    Article  Google Scholar 

  30. Elashiri MA, Rajesh A, Nath Pandey S, Kumar Shukla S, Urooj S, Lay-Ekuakille A (2022) Ensemble of weighted deep concatenated features for the skin disease classification model using modified Long short term memory. Biomed Signal Process Control 76(103):729. https://doi.org/10.1016/j.bspc.2022.103729

    Article  Google Scholar 

  31. Farooq MA, Azhar MA, Raza RH (2016) Automatic lesion detection system (ALDS) for skin cancer classification using SVM and neural classifiers. In: 2016 IEEE 16th international conference on bioinformatics and bioengineering (BIBE). https://doi.org/10.1109/bibe.2016.53

    Chapter  Google Scholar 

  32.  Feature extraction and expression classification using histogram of oriented gradients (hog) and support vector machine (SVM). (2020) Strad Res 7(9):10.37896/sr7.9/003

  33. Fei D-Y, Almasiri O, Rafig A (2020) Skin cancer detection using support vector machine learning classification based on particle swarm optimization capabilities. Trans Mach Learn Artif Intell 8(4):01–13. https://doi.org/10.14738/tmlai.84.8415

    Article  Google Scholar 

  34. Gajera HK, Nayak DR, Zaveri MA (2023) A comprehensive analysis of dermoscopy images for melanoma detection via deep CNN features. Biomed Signal Process Control 79(104):186. https://doi.org/10.1016/j.bspc.2022.104186

    Article  Google Scholar 

  35. Gautam D, Ahmed M (2015) Melanoma detection and classification using SVM based decision support system. In: 2015 annual IEEE India conference (INDICON). https://doi.org/10.1109/indicon.2015.7443447

    Chapter  Google Scholar 

  36. Giotis I, Molders N, Land S, Biehl M, Jonkman MF, Petkov N (2015) Med-Node: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst Appl 42(19):6578–6585. https://doi.org/10.1016/j.eswa.2015.04.034

    Article  Google Scholar 

  37. Girdhar N, Sinha A, Gupta S (2022) DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection. Soft Comput. https://doi.org/10.1007/s00500-022-07406-z

  38. Grignaffini F, Barbuto F, Piazzo L, Troiano M, Simeoni P, Mangini F, Pellacani G, Cantisani C, Frezza F (2022) Machine learning approaches for skin cancer classification from Dermoscopic Images: a systematic review. Algorithms 15(11):438. https://doi.org/10.3390/a15110438

    Article  Google Scholar 

  39. Harley AW (2015) An interactive node-link visualization of Convolutional Neural Networks. Advances in Visual Computing, 867–877. https://doi.org/10.1007/978-3-319-27,857-5_77

  40. Hosny KM, Kassem MA (2022) Refined residual deep convolutional network for skin lesion classification. J Digit Imaging 35(2):258–280. https://doi.org/10.1007/s10278-021-00552-0

    Article  Google Scholar 

  41. Hosny KM, Kassem MA, Fouad MM (2020) Classification of skin lesions into seven classes using transfer learning with AlexNet. J Digit Imaging 33(5):1325–1334. https://doi.org/10.1007/s10278-020-00371-9

    Article  Google Scholar 

  42. Hosny KM, Kassem MA, Foaud MM (2020) Skin melanoma classification using ROI and data augmentation with deep convolutional Neural Networks. Multimed Tools Appl 79(33-34):24029–24055. https://doi.org/10.1007/s11042-020-09067-2

    Article  Google Scholar 

  43. Hussaindeen A, Iqbal S, Ambegoda TD (2022) Multi-label prototype based interpretable machine learning for melanoma detection. Int J Adv Signal Image Sci 8(1):40–53. https://doi.org/10.29284/ijasis.8.1.2022.40-53

    Article  Google Scholar 

  44. Indraswari R, Rokhana R, Herulambang W (2022) Melanoma image classification based on MobileNetV2 Network. Proc Comput Sci 197:198–207. https://doi.org/10.1016/j.procs.2021.12.132

    Article  Google Scholar 

  45. Iqbal I, Younus M, Walayat K, Kakar MU, Ma J (2021) Automated multi-class classification of skin lesions through deep convolutional neural network with Dermoscopic Images. Comput Med Imaging Graph 88(101):843. https://doi.org/10.1016/j.compmedimag.2020.101843

    Article  Google Scholar 

  46. Iqtidar K, Iqtidar A, Ali W, Aziz S, Khan MU (2020) Image pattern analysis towards classification of skin cancer through dermoscopic images. In: 2020 first international conference of smart systems and emerging technologies (SMARTTECH). https://doi.org/10.1109/smart-tech49988.2020.00055

    Chapter  Google Scholar 

  47. ISIC Archive. Available online: https://isic-archive.com/

  48. Isic Challenge (n.d.) Retrieved January 7, 2023, from https://challenge.isicarchive.com/data/#2016

  49. Isic Challenge. (n.d.) Retrieved January 7, 2023, from https://challenge.isic-archive.com/data/#2017

  50. Isic Challenge. (n.d.) Retrieved January 7, 2023, from https://challenge.isic-archive.com/data/#2019

  51. Isic Challenge. (n.d.) Retrieved January 7, 2023, from https://challenge.isic-archive.com/data/#2020

  52. Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using Deep Learning. In: 2016 23rd international conference on pattern recognition (ICPR). https://doi.org/10.1109/icpr.2016.7899656

    Chapter  Google Scholar 

  53. Jafari MH, Nasr-Esfahani E, Karimi N, Soroushmehr SM, Samavi S, Najarian K (2017) Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma. Int J Comput Assist Radiol Surg 12(6):1021–1030. https://doi.org/10.1007/s11548-017-1567-8

    Article  Google Scholar 

  54. Jaisakthi SM, Devikirubha B (2021) Role of deep learning techniques in detecting skin cancer: a Review. Handbook of Deep Learning in Biomedical Engineering and Health Informatics, pp 253–279. https://doi.org/10.1201/9781003144694-10

  55. Jaworek-Korjakowska J, Kleczek P, Gorgon M (2019) Melanoma thickness prediction based on convolutional neural network with VGG-19 model transfer learning. In: 2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). https://doi.org/10.1109/cvprw.2019.00333

    Chapter  Google Scholar 

  56. Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, Percybrooks WS (2021) Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med Imaging 21(1). https://doi.org/10.1186/s12880-020-00534-8

  57. Kalouche S (2016) Vision-based classification of skin cancer using deep learning. Available online: https://www.semanticscholar.org/paper/Vision-Based-Classification-of-Skin-Cancer-using-Kalouche/b57ba909756462d812dc20fca157b3972bc1f533. Accessed 10 Jan 2021

  58. Kanca E, Ayas S (2022) Learning hand-crafted features for k-NN based skin disease classification. In: 2022 international congress on human-computer interaction, optimization and robotic applications (HORA). https://doi.org/10.1109/hora55278.2022.9799834

    Chapter  Google Scholar 

  59. Kassem MA, Hosny KM, Damaševičius R, Eltoukhy MM (2021) Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review. Diagnostics 11(8):1390. https://doi.org/10.3390/diagnostics11081390

    Article  Google Scholar 

  60. Kaur M, Kumar V, Yadav V, Singh D, Kumar N, Das NN (2021) Metaheuristic-based deep covid-19 screening model from chest X-ray images. J Healthc Eng 2021:1–9. https://doi.org/10.1155/2021/8829829

    Article  Google Scholar 

  61. Khan MA, Zhang Y-D, Sharif M, Akram T (2021) Pixels to classes: intelligent learning framework for multiclass skin lesion localization and classification. Comput Electr Eng 90(106):956. https://doi.org/10.1016/j.compeleceng.2020.106956

    Article  Google Scholar 

  62. Kumar S; Kumar A Extended feature space-based automatic melanoma detection system. arXiv 2022, arXiv:2209.04588

  63. Kumar N, Gupta M, Gupta D, Tiwari S (2021) Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-021-03306-6

  64. Kumar N, Gupta M, Sharma D, Ofori I (2022) Technical job recommendation system using apis and web crawling. Comput Intell Neurosci 2022:1–11. https://doi.org/10.1155/2022/7797548

    Article  Google Scholar 

  65. Lopes J, Rodrigues CM, Gaspar MM, Reis CP (2022) How to treat melanoma? the current status of innovative nanotechnological strategies and the role of minimally invasive approaches like PTT and PDT. Pharmaceutics 14(9):1817. https://doi.org/10.3390/pharmaceutics14091817

    Article  Google Scholar 

  66. Maglogiannis I, Delibasis K (2015) Hair removal on dermoscopy images. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). https://doi.org/10.1109/embc.2015.7319013

    Chapter  Google Scholar 

  67. Mahbod A, Schaefer G, Wang C, Ecker R, Ellinge I (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). https://doi.org/10.1109/icassp.2019.8683352

    Chapter  Google Scholar 

  68. Malibari AA, Alzahrani JS, Eltahir MM, Malik V, Obayya M, Duhayyim MA, Lira Neto AV, de Albuquerque VH (2022) Optimal deep neural Network-driven computer aided diagnosis model for skin cancer. Comput Electr Eng 103(108):318. https://doi.org/10.1016/j.compeleceng.2022.108318

    Article  Google Scholar 

  69. Mane S, Shinde S (2018) A method for melanoma skin cancer detection USING Dermoscopy Images. In: 2018 fourth international conference on computing communication control and automation (ICCUBEA). https://doi.org/10.1109/iccubea.2018.8697804

    Chapter  Google Scholar 

  70. Marks R (1995) An overview of skin cancers. Cancer 75(S2):607–612

    Article  Google Scholar 

  71. Masad IS, Alqudah A, Alqudah AM, Almashaqbeh S (2021) A hybrid deep learning approach towards building an intelligent system for pneumonia detection in chest X-ray images. Int J Electr Comput Eng (IJECE) 11(6):5530–5540. https://doi.org/10.11591/ijece.v11i6

    Article  Google Scholar 

  72. Mendonca T, Ferreira PM, Marques JS, Marcal AR, Rozeira J (2013) Ph2 - A dermoscopic image database for research and benchmarking. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). https://doi.org/10.1109/embc.2013.6610779

    Chapter  Google Scholar 

  73. Menzies method. Dermoscopedia.org. (n.d.). Retrieved December 26, 2022, from https://dermoscopedia.org/w/index.php?title=Menzies_Method&oldid=9988

  74. Moazen H, Jamzad M (2020) Automatic skin cancer (melanoma) detection by processing dermatoscopic images. In: 2020 international conference on machine vision and image processing (MVIP). https://doi.org/10.1109/mvip49855.2020.9116918

    Chapter  Google Scholar 

  75. Montaha S, Azam S, Rafid AK, Islam S, Ghosh P, Jonkman M (2022) A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity. PLoS ONE 17(8). https://doi.org/10.1371/journal.pone.0269826

  76. Munia TT, Alam MN, Neubert J, Fazel-Rezai R (2017) Automatic diagnosis of melanoma using linear and nonlinear features from digital image. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). https://doi.org/10.1109/embc.2017.8037802

    Chapter  Google Scholar 

  77. Nancy VA, Arya MS, Nitin N (2022) Impact of data augmentation on skin lesion classification using deep learning. In: 2022 5th international conference on information and computer technologies (ICICT). https://doi.org/10.1109/icict55905.2022.00020

    Chapter  Google Scholar 

  78. Narayan Das N, Kumar N, Kaur M, Kumar V, Singh D (2022) Automated deep transfer learning-based approach for detection of COVID-19 infection in chest x-rays. IRBM 43(2):114–119. https://doi.org/10.1016/j.irbm.2020.07.001

    Article  Google Scholar 

  79. Nugroho AA, Slamet I, Sugiyanto. (2019) Skins cancer identification system of Haml0000 skin cancer dataset using Convolutional Neural Network. In: International conference on science and applied science (icsas) 2019. https://doi.org/10.1063/1.5141652

    Chapter  Google Scholar 

  80. Ozturk S, Cukur T (2022) Deep clustering via center-oriented margin free-triplet loss for skin lesion detection in highly imbalanced datasets. IEEE J Biomed Health Inform 26(9):4679–4690. https://doi.org/10.1109/jbhi.2022.3187215

    Article  Google Scholar 

  81. Patil SM, Rajguru BS, Mahadik RS, Pawar OP (2022) Melanoma skin cancer disease detection using convolutional neural network. In: 2022 3rd international conference for emerging technology (INCET). https://doi.org/10.1109/incet54531.2022.9825381

    Chapter  Google Scholar 

  82. Performance evaluation of different machine learning classification algorithms for diseases diagnosis. (2021). Int J E-Health Med Commun, 12(6). https://doi.org/10.4018/ijehmc.20211101oa09

  83. Premier Surgical Staff. What is the difference between melanoma and non-melanoma skin cancer? PSS. Available online: https://www.premiersurgical.com/01/whats-the-difference-between-melanoma-and-non-melanoma-skin-cancer/

  84. Pujara A (2022) Image classification with MobileNet. Medium. Retrieved December 12, 2022, from https://medium.com/analytics-vidhya/image-classification-with-mobilenet-cc6fbb2cd470

  85. Rahman Z, Hossain MS, Islam MR, Hasan MM, Hridhee RA (2021) An approach for multiclass skin lesion classification based on ensemble learning. Inform Med Unlocked 25(100):659. https://doi.org/10.1016/j.imu.2021.100659

    Article  Google Scholar 

  86. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3). https://doi.org/10.1007/s42979-021-00592-x

  87. Seeja RD, Suresh A (2019) Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (SVM). Asian Pac J Cancer Prev 20(5):1555–1561. https://doi.org/10.31557/apjcp.2019.20.5.1555

    Article  Google Scholar 

  88. Sharafudeen M, S VC (2022) Detecting skin lesions fusing handcrafted features in image network ensembles. Multimed Tools Appl 82(2):3155–3175. https://doi.org/10.1007/s11042-022-13,046-0

    Article  Google Scholar 

  89. Sharma P, Gautam A, Nayak R, Balabantaray BK (2022) Melanoma detection using advanced deep neural network. In: 2022 4th international conference on energy, power and environment (ICEPE). https://doi.org/10.1109/icepe55035.2022.9798123

    Chapter  Google Scholar 

  90. Shetty B, Fernandes R, Rodrigues AP, Chengoden R, Bhattacharya S, Lakshmanna K (2022) Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-22,644-9

  91. Step by step VGG16 implementation in Keras for beginners. (n.d.). Retrieved December 12, 2022, from https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c

  92. Sturm RA (2002) Skin Colour and Skin Cancer -MC1R, the Genetic Link. Melanoma Res. 12:405–416

    Article  Google Scholar 

  93. Tabrizchi H, Parvizpour S, Razmara J (2022) An improved VGG model for skin cancer detection. Neural Process Lett. https://doi.org/10.1007/s11063-022-10927-1

  94. Tschandl P (2021) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Harvard Dataverse. Retrieved January 7, 2023, from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FDBW86T

  95. Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5(1). https://doi.org/10.1038/sdata.2018.161

  96. Types of optimizers in deep learning every AI engineer should know. upGrad blog. (2022) Retrieved January 7, 2023, from https://www.upgrad.com/blog/types-of-optimizers-in-deep-learning/#:~:text=In%20deep%20learning%2C%20optimizers%20are,training%20a%20neural%20network%20model

  97. Venugopal V, Joseph J, Vipin Das M, Kumar Nath M (2022) An efficientnet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and Nevi skin lesions. Comput Methods Programs Biomed 222(106):935. https://doi.org/10.1016/j.cmpb.2022.106935

    Article  Google Scholar 

  98. Venugopal V, Joseph J, Das MV, Nath MK (2022) DTP-net: A convolutional neural network model to predict threshold for localizing the lesions on dermatological macro-images. Comput Biol Med 148(105):852. https://doi.org/10.1016/j.compbiomed.2022.105852

    Article  Google Scholar 

  99. Vipin V, Nath MK, Sreejith V, Giji NF, Ramesh A, Meera M (2021) Detection of melanoma using deep learning techniques: a review. In: 2021 international conference on communication, control and information sciences (ICCISc). https://doi.org/10.1109/iccisc52257.2021.9484861

    Chapter  Google Scholar 

  100. Vocaturo E, Zumpano E, Veltri P (2018) Image pre-processing in computer vision systems for melanoma detection. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). https://doi.org/10.1109/bibm.2018.8621507

    Chapter  Google Scholar 

  101. What is hyperparametertuning? Anyscale.(n.d.) Retrieved January 7, 2023, from https://www.anyscale.com/blog/what-is-hyperparameter-tuning

  102. What is learning rate in machine learning. Deepchecks (2022) Retrieved January 7, 2023, from https://deepchecks.com/glossary/learning-rate-in-machine-learning/#:~:text=The%20learning%20rate%2C%20denoted%20by,network%20concerning%20the%20loss%20gradient%3E

  103. Woodie A (2017) Machine learning, deep learning, and ai: What’s the difference? Datanami. Retrieved January 7, 2023, from https://www.datanami.com/2017/05/10/machine-learning-deep-learning-ai-whats-difference/

  104. Wu Y, Lariba AC, Chen H, Zhao H (2022) Skin lesion classification based on deep convolutional neural network. In: 2022 IEEE 4th international conference on power, intelligent computing and systems (ICPICS). https://doi.org/10.1109/icpics55264.2022.9873756

    Chapter  Google Scholar 

  105. Yuan X, Yang Z, Zouridakis G, Mullani N (2006) SVM-based texture classification and application to early melanoma detection. In: 2006 international conference of the IEEE engineering in medicine and biology society. https://doi.org/10.1109/iembs.2006.260056

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Auxilia Osvin Nancy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nancy, V.A.O., Prabhavathy, P., Arya, M.S. et al. Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms. Multimed Tools Appl 82, 45913–45957 (2023). https://doi.org/10.1007/s11042-023-16422-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16422-6

Keywords

Navigation