Skip to main content
Log in

Machine learning-based solutions for resource management in fog computing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Fog computing is a paradigm that offers distributed and diverse resources at the network edge to fulfill the quality of service requirements. However, effectively managing these resources has become a significant challenge due to the dynamic nature of user demands and the distributed and heterogeneous characteristics of fog computing. Consequently, managing resources based on accurately predicting dynamic user demands and resource availability using machine-learning methods becomes demanding. In this study, we conduct a comprehensive analysis of existing literature that leverages machine learning-based approaches to address resource management challenges in fog computing. These challenges encompass resource provisioning, application placement, scheduling, resource allocation, task offloading, and load balancing. The examined literature is thoroughly compared based on their employed strategies, objective metrics, tools, datasets, and techniques. Furthermore, we identify research gaps in resource management issues and propose future directions for advancing the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

  2. https://archive.ics.uci.edu/ml/datasets/MHEALTH Dataset

  3. https://data.cityofchicago.org/

  4. https://www.fed4fire.eu/

References

  1. Abdulkareem KH, Mohammed MA, Gunasekaran SS, Al-Mhiqani MN, Mutlag AA, Mostafa SA, Ali NS, Ibrahim DA (2019) A review of fog computing and machine learning: Concepts, applications, challenges, and open issues. IEEE Access 7:153123–153140. https://doi.org/10.1109/ACCESS.2019.2947542

    Article  Google Scholar 

  2. Abdullah M, Iqbal W, Mahmood A, Bukhari F, Erradi A (2021) Predictive autoscaling of microservices hosted in fog microdata center. IEEE Syst J 15(1):1275–1286. https://doi.org/10.1109/JSYST.2020.2997518

    Article  ADS  Google Scholar 

  3. Ahvar E, Ahvar S, Mann ZA, Crespi N, Glitho R, Garcia-Alfaro J (2021) Deca: A dynamic energy cost and carbon emission-efficient application placement method for edge clouds. IEEE Access 9:70192–70213. https://doi.org/10.1109/ACCESS.2021.3075973

    Article  Google Scholar 

  4. Ahvar E, Ahvar S, Raza SM, Manuel Sanchez Vilchez J, Lee GM (2021) Next generation of sdn in cloud-fog for 5g and beyond-enabled applications: Opportunities and challenges. Network 1(1):28–49. https://doi.org/10.3390/network1010004

    Article  Google Scholar 

  5. Albalawi M, Alkayal E, Barnawi A, Boulares M (2022) Load balancing based on many-objective particle swarm optimization algorithm with support vector regression in fog computing. J Eng Appl Sci Technol 138

  6. Alizadeh MR, Khajehvand V, Rahmani AM, Akbari E (2020) Task scheduling approaches in fog computing: A systematic review. Int J Commun Syst 33(16):4583. https://doi.org/10.1002/dac.4583

    Article  Google Scholar 

  7. Alsadie D (2022) Resource management strategies in fog computing environment-a comprehensive review. International Journal of Computer Science & Network Security 22(4):310–328

    Google Scholar 

  8. Bacanin N, Zivkovic M, Bezdan T, Venkatachalam K, Abouhawwash M (2022) Modified firefly algorithm for workflow scheduling in cloud-edge environment. Neural Comput Appl 34(11):9043–9068. https://doi.org/10.1007/s00521-022-06925-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bacanin N, Stoean R, Zivkovic M, Petrovic A, Rashid TA, Bezdan T (2021) Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: Application for dropout regularization. Mathematics 9(21). https://doi.org/10.3390/math9212705

  10. Bhatia M, Sood SK, Kaur S (2019) Quantum-based predictive fog scheduler for iot applications. Comput Ind 111:51–67. https://doi.org/10.1016/j.compind.2019.06.002

    Article  Google Scholar 

  11. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. MCC ’12, pp. 13–16. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2342509.2342513

  12. Cho B, Xiao Y (2021) Learning-based decentralized offloading decision making in an adversarial environment. IEEE Trans Veh Technol 70(11):11308–11323. https://doi.org/10.1109/TVT.2021.3115899

    Article  Google Scholar 

  13. Etemadi M, Ghobaei-Arani M, Shahidinejad A (2021) A learning-based resource provisioning approach in the fog computing environment. Journal of Experimental & Theoretical Artificial Intelligence 33(6):1033–1056. https://doi.org/10.1080/0952813X.2020.1818294

    Article  ADS  Google Scholar 

  14. Etemadi M, Ghobaei-Arani M, Shahidinejad A (2021) A cost-efficient auto-scaling mechanism for iot applications in fog computing environment: a deep learning-based approach. Clust Comput 24(4):3277–3292. https://doi.org/10.1007/s10586-021-03307-2

    Article  Google Scholar 

  15. Eyckerman R, Reiter P, Latré S, Marquez-Barja J, Hellinckx P (2022) Application placement in fog environments using multi-objective reinforcement learning with maximum reward formulation. In: NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–6. https://doi.org/10.1109/NOMS54207.2022.9789757

  16. Fahimullah M, Gupta R, Ahvar S, Trocan M (2022) Explaining predictive scheduling in cloud. In: Szczerbicki E, Wojtkiewicz K, Nguyen SV, Pietranik M, Krótkiewicz M (eds.) Recent Challenges in Intelligent Information and Database Systems, pp. 81–91. Springer, Singapore. https://doi.org/10.1007/978-981-19-8234-7_7

  17. Fahimullah M, Philippe G, Ahvar S, Trocan M (2023) Simulation tools for fog computing: A comparative analysis. Sensors 23(7). https://doi.org/10.3390/s23073492

  18. Faraji-Mehmandar M, Jabbehdari S, Haj Seyyed Javadi H (2021) A proactive fog service provisioning framework for internet of things applications: An autonomic approach. Trans Emerg Telecommun Technol 32(11):4342. https://doi.org/10.1002/ett.4342

    Article  Google Scholar 

  19. Faraji-Mehmandar M, Jabbehdari S, Javadi HHS (2022) A self-learning approach for proactive resource and service provisioning in fog environment. J Supercomput 78(15):16997–17026. https://doi.org/10.1007/s11227-022-04521-4

    Article  Google Scholar 

  20. Farhat P, Sami H, Mourad A (2020) Reinforcement r-learning model for time scheduling of on-demand fog placement. J Supercomput 76(1):388–410. https://doi.org/10.1007/s11227-019-03032-z

    Article  Google Scholar 

  21. Gao X, Huang X, Shao Z, Yang Y (2021) An integration of online learning and online control for green offloading in fog-assisted iot systems. IEEE Transactions on Green Communications and Networking 5(3):1632–1646. https://doi.org/10.1109/TGCN.2021.3083426

    Article  Google Scholar 

  22. Ghobaei-Arani M, Souri A, Rahmanian AA (2020) Resource management approaches in fog computing: a comprehensive review. Journal of Grid Computing 18(1):1–42. https://doi.org/10.1007/s10723-019-09491-1

    Article  Google Scholar 

  23. Goudarzi M, Palaniswami M, Buyya R (2023) A distributed deep reinforcement learning technique for application placement in edge and fog computing environments. IEEE Trans Mob Comput 22(5):2491–2505. https://doi.org/10.1109/TMC.2021.3123165

    Article  Google Scholar 

  24. Guevara JC, Torres RS, da Fonseca NLS (2020) On the classification of fog computing applications: A machine learning perspective. J Netw Comput Appl 159:102596. https://doi.org/10.1016/j.jnca.2020.102596

    Article  Google Scholar 

  25. Habibi P, Farhoudi M, Kazemian S, Khorsandi S, Leon-Garcia A (2020) Fog computing: A comprehensive architectural survey. IEEE Access 8:69105–69133. https://doi.org/10.1109/ACCESS.2020.2983253

    Article  Google Scholar 

  26. Hameed AR, Islam S, Ahmad I, Munir K (2021) Energy- and performance-aware load-balancing in vehicular fog computing. Sustainable Computing: Informatics and Systems 30:100454. https://doi.org/10.1016/j.suscom.2020.100454

    Article  Google Scholar 

  27. Iftikhar S, Gill SS, Song C, Xu M, Aslanpour MS, Toosi AN, Du J, Wu H, Ghosh S, Chowdhury D, Golec M, Kumar M, Abdelmoniem AM, Cuadrado F, Varghese B, Rana O, Dustdar S, Uhlig S (2023) Ai-based fog and edge computing: A systematic review, taxonomy and future directions. Internet of Things 21:100674. https://doi.org/10.1016/j.iot.2022.100674

    Article  Google Scholar 

  28. Iorga M, Feldman L, Barton R, Martin M, Goren N, Mahmoudi C (2017) The nist definition of fog computing. Technical report, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.500-325

    Article  Google Scholar 

  29. Jamil B, Ijaz H, Shojafar M, Munir K, Buyya R (2022) Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions. ACM Comput Surv 54(11s). https://doi.org/10.1145/3513002

  30. Jazayeri F, Shahidinejad A, Ghobaei-Arani M (2021) Autonomous computation offloading and auto-scaling the in the mobile fog computing: a deep reinforcement learning-based approach. J Ambient Intell Humaniz Comput 12(8):8265–8284. https://doi.org/10.1007/s12652-020-02561-3

    Article  Google Scholar 

  31. Jiang F, Ma R, Gao Y (2021) Gu Z (2021) A reinforcement learning-based computing offloading and resource allocation scheme in f-ran. EURASIP Journal on Advances in Signal Processing 1:1–25. https://doi.org/10.1186/s13634-021-00802-x

    Article  Google Scholar 

  32. Kansal P, Kumar M, Verma OP (2022) Classification of resource management approaches in fog/edge paradigm and future research prospects: a systematic review. J Supercomput 78(11):13145–13204. https://doi.org/10.1007/s11227-022-04338-1

    Article  Google Scholar 

  33. Kashani MH, Mahdipour E (2023) Load balancing algorithms in fog computing. IEEE Trans Serv Comput 16(2):1505–1521. https://doi.org/10.1109/TSC.2022.3174475

    Article  Google Scholar 

  34. Kaur N, Kumar A, Kumar R (2021) A systematic review on task scheduling in fog computing: Taxonomy, tools, challenges, and future directions. Concurrency and Computation: Practice and Experience 33(21):6432. https://doi.org/10.1002/cpe.6432

    Article  Google Scholar 

  35. Khumalo NN, Oyerinde OO, Mfupe L (2021) Reinforcement learning-based resource management model for fog radio access network architectures in 5g. IEEE Access 9:12706–12716. https://doi.org/10.1109/ACCESS.2021.3051695

    Article  Google Scholar 

  36. Kim J, Park K, Yang H, Ha S (2021) Adaptive run-time scheduling of dependent services for service-oriented IoT systems. Des Autom Embed Syst 25(4):265–295. https://doi.org/10.1007/s10617-021-09253-x

    Article  Google Scholar 

  37. Lakhan A, Mohammed MA, Obaid OI, Chakraborty C, Abdulkareem KH, Kadry S (2022) Efficient deep-reinforcement learning aware resource allocation in sdn-enabled fog paradigm. Autom Softw Eng 29(1):20. https://doi.org/10.1007/s10515-021-00318-6

    Article  Google Scholar 

  38. Liao S, Wu J, Mumtaz S, Li J, Morello R, Guizani M (2022) Cognitive balance for fog computing resource in internet of things: An edge learning approach. IEEE Trans Mob Comput 21(5):1596–1608. https://doi.org/10.1109/TMC.2020.3026580

    Article  Google Scholar 

  39. Mahmud R, Ramamohanarao K, Buyya R (2020) Application management in fog computing environments: A taxonomy, review and future directions. ACM Comput Surv 53(4). https://doi.org/10.1145/3403955

  40. Malakar S, Ghosh M, Bhowmik S, Sarkar R, Nasipuri M (2020) A ga based hierarchical feature selection approach for handwritten word recognition. Neural Comput Appl 32:2533–2552. https://doi.org/10.1007/s00521-018-3937-8

    Article  Google Scholar 

  41. Manasrah AM, Aldomi A, Gupta BB (2019) An optimized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Clust Comput 22(1):1639–1653. https://doi.org/10.1007/s10586-017-1559-z

    Article  Google Scholar 

  42. Mijuskovic A, Chiumento A, Bemthuis R, Aldea A, Havinga P (2021) Resource management techniques for cloud/fog and edge computing: An evaluation framework and classification. Sensors 21(5). https://doi.org/10.3390/s21051832

  43. Mobasheri M, Kim Y, Kim W (2021) Toward an adaptive threshold on cooperative bandwidth management based on hierarchical reinforcement learning. Sensors 21(21). https://doi.org/10.3390/s21217053

  44. Murthy BK, Shiva SG (2021) Double-state-temporal difference learning for resource provisioning in uncertain fog computing environment. In: 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 0435–0440. https://doi.org/10.1109/IEMCON53756.2021.9623085

  45. Naha RK, Garg S, Georgakopoulos D, Jayaraman PP, Gao L, Xiang Y, Ranjan R (2018) Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 6:47980–48009. https://doi.org/10.1109/ACCESS.2018.2866491

    Article  Google Scholar 

  46. Naha R, Garg S, Battula SK, Amin MB, Georgakopoulos D (2022) Multiple linear regression-based energy-aware resource allocation in the fog computing environment. Comput Netw 216:109240. https://doi.org/10.1016/j.comnet.2022.109240

    Article  Google Scholar 

  47. Nair B, Bhanu S (2022) A reinforcement learning algorithm for rescheduling preempted tasks in fog nodes. J Sched 25(5):547–565. https://doi.org/10.1007/s10951-022-00725-x

    Article  MathSciNet  Google Scholar 

  48. Nayeri ZM, Ghafarian T, Javadi B (2021) Application placement in fog computing with ai approach: Taxonomy and a state of the art survey. J Netw Comput Appl 185:103078. https://doi.org/10.1016/j.jnca.2021.103078

    Article  Google Scholar 

  49. Pallewatta S, Kostakos V, Buyya R (2023) Placement of microservices-based iot applications in fog computing: A taxonomy and future directions. ACM Comput Surv. https://doi.org/10.1145/3592598. Just Accepted

  50. Pallewatta S, Kostakos V, Buyya R (2019) Microservices-based iot application placement within heterogeneous and resource constrained fog computing environments. In: Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing. UCC’19, pp. 71–81. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3344341.3368800

  51. Pg. Ali Kumar DSNK, Newaz SHS, Rahman FH, Lee GM, Karmakar G, Au TW (2022) Green demand aware fog computing: A prediction-based dynamic resource provisioning approach. Electronics 11(4). https://doi.org/10.3390/electronics11040608

  52. Poltronieri F, Tortonesi M, Stefanelli C, Suri N (2021) Reinforcement learning for value-based placement of fog services. In: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 466–472

  53. Rahimikhanghah A, Tajkey M, Rezazadeh B, Rahmani AM (2022) Resource scheduling methods in cloud and fog computing environments: a systematic literature review. Clust Comput 25(2):911–945. https://doi.org/10.1007/s10586-021-03467-1

    Article  Google Scholar 

  54. Razaq MM, Rahim S, Tak B, Peng L (2022) Fragmented task scheduling for load-balanced fog computing based on q-learning. Wirel Commun Mob Comput 2022:4218696. https://doi.org/10.1155/2022/4218696

    Article  Google Scholar 

  55. Reiss C, Wilkes J, Hellerstein JL (2011) Google cluster-usage traces: Format+ schema. Google Inc., White Paper, p 1

    Google Scholar 

  56. Ren Y, Sun Y, Peng M (2021) Deep reinforcement learning based computation offloading in fog enabled industrial internet of things. IEEE Trans Industr Inf 17(7):4978–4987. https://doi.org/10.1109/TII.2020.3021024

    Article  Google Scholar 

  57. Samann FE, Abdulazeez AM, Askar S (2021) Fog computing based on machine learning: A review. Int J Interact Mob Technol 15(12). https://doi.org/10.3991/ijim.v15i12.21313

  58. Sami H, Mourad A, Otrok H, Bentahar J (2022) Demand-driven deep reinforcement learning for scalable fog and service placement. IEEE Trans Serv Comput 15(5):2671–2684. https://doi.org/10.1109/TSC.2021.3075988

    Article  Google Scholar 

  59. Santos J, Wauters T, Volckaert B, De Turck F (2021) Reinforcement learning for service function chain allocation in fog computing. Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning 147–173. https://doi.org/10.1002/9781119675525.ch7

  60. Santos J, Wauters T, Volckaert B, Turck FD (2021) Resource provisioning in fog computing through deep reinforcement learning. In: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 431–437

  61. Sarkar I, Kumar S (2022) Deep learning-based energy-efficient computational offloading strategy in heterogeneous fog computing networks. J Supercomput 78(13):15089–15106. https://doi.org/10.1007/s11227-022-04461-z

    Article  Google Scholar 

  62. Sellami B, Hakiri A, Yahia SB, Berthou P (2022) Energy-aware task scheduling and offloading using deep reinforcement learning in sdn-enabled iot network. Comput Netw 210:108957. https://doi.org/10.1016/j.comnet.2022.108957

    Article  Google Scholar 

  63. Shakarami A, Shakarami H, Ghobaei-Arani M, Nikougoftar E, Faraji-Mehmandar M (2022) Resource provisioning in edge/fog computing: A comprehensive and systematic review. J Syst Architect 122:102362. https://doi.org/10.1016/j.sysarc.2021.102362

    Article  Google Scholar 

  64. Shen Y, Zhang J, Song SH, Letaief KB (2021) Ai empowered resource management for future wireless networks. In: 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), pp. 252–257. https://doi.org/10.1109/MeditCom49071.2021.9647580

  65. Shi J, Du J, Wang J, Yuan J (2021) Deep reinforcement learning-based v2v partial computation offloading in vehicular fog computing. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. https://doi.org/10.1109/WCNC49053.2021.9417450

  66. Singh RM, Awasthi LK, Sikka G (2022) Towards metaheuristic scheduling techniques in cloud and fog: An extensive taxonomic review. ACM Comput Surv 55(3). https://doi.org/10.1145/3494520

  67. Strumberger I, Bacanin N, Tuba M, Tuba E (2019) Resource scheduling in cloud computing based on a hybridized whale optimization algorithm. Appl Sci 9(22). https://doi.org/10.3390/app9224893

  68. Suryadevara NK (2021) Energy and latency reductions at the fog gateway using a machine learning classifier. Sustainable Computing: Informatics and Systems 31:100582. https://doi.org/10.1016/j.suscom.2021.100582

    Article  Google Scholar 

  69. Swarup S, Shakshuki EM, Yasar A (2021) Energy efficient task scheduling in fog environment using deep reinforcement learning approach. Procedia Computer Science 191, 65–75. https://doi.org/10.1016/j.procs.2021.07.012. The 18th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), The 16th International Conference on Future Networks and Communications (FNC), The 11th International Conference on Sustainable Energy Information Technology

  70. Talaat FM (2022) Effective prediction and resource allocation method (epram) in fog computing environment for smart healthcare system. Multimedia Tools and Applications 81(6):8235–8258. https://doi.org/10.1007/s11042-022-12223-5

    Article  Google Scholar 

  71. Talaat FM (2022) Effective deep q-networks (edqn) strategy for resource allocation based on optimized reinforcement learning algorithm. Multimedia Tools and Applications 81(28):39945–39961. https://doi.org/10.1007/s11042-022-13000-0

    Article  Google Scholar 

  72. Talaat FM, Saraya MS, Saleh AI, Ali HA, Ali SH (2020) A load balancing and optimization strategy (lbos) using reinforcement learning in fog computing environment. J Ambient Intell Humaniz Comput 11(11):4951–4966. https://doi.org/10.1007/s12652-020-01768-8

    Article  Google Scholar 

  73. Tan J, Guan W (2022) Resource allocation of fog radio access network based on deep reinforcement learning. Engineering Reports 4(5):12497. https://doi.org/10.1002/eng2.12497

    Article  Google Scholar 

  74. Tang X, Cao C, Wang Y, Zhang S, Liu Y, Li M, He T (2021) Computing power network: The architecture of convergence of computing and networking towards 6g requirement. China Communications 18(2), 175–185. https://doi.org/10.23919/JCC.2021.02.011

  75. Travieso-González CM, Bukhari MM, Ghazal TM, Abbas S, Khan MA, Farooq U, Wahbah H, Ahmad M, Adnan KM (2022) An intelligent proposed model for task offloading in fog-cloud collaboration using logistics regression. Comput Intell Neurosci 2022:3606068. https://doi.org/10.1155/2022/3606068

    Article  Google Scholar 

  76. Vergara J, Botero J, Fletscher L (2023) A comprehensive survey on resource allocation strategies in fog/cloud environments. Sensors 23(9). https://doi.org/10.3390/s23094413

  77. Yang M, Zhu H, Wang H, Koucheryavy Y, Samouylov K, Qian H (2021) An online learning approach to computation offloading in dynamic fog networks. IEEE Internet Things J 8(3):1572–1584. https://doi.org/10.1109/JIOT.2020.3015522

    Article  Google Scholar 

  78. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All one needs to know about fog computing and related edge computing paradigms: A complete survey. J Syst Architect 98:289–330. https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  79. Zhang L, Jiang Y, Zheng FC, Bennis M, You X (2022) Computation offloading and resource allocation in f-rans: A federated deep reinforcement learning approach. In: 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 97–102. https://doi.org/10.1109/ICCWorkshops53468.2022.9814649

  80. Zheng Y (2011) T-drive trajectory data sample. T-Drive sample dataset

Download references

Acknowledgements

We appreciate Navaneedhan Govindaraj’s inputs for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Fahimullah or Maria Trocan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahimullah, M., Ahvar, S., Agarwal, M. et al. Machine learning-based solutions for resource management in fog computing. Multimed Tools Appl 83, 23019–23045 (2024). https://doi.org/10.1007/s11042-023-16399-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16399-2

Keywords

Navigation