Skip to main content
Log in

DeepLeukNet—A CNN based microscopy adaptation model for acute lymphoblastic leukemia classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Acute Lymphoblastic Leukemia is one of the fatal types of disease which causes a high mortality rate among children and adults. Traditional diagnosing of this disease is achieved through analyzing the microscopic images of white blood cells by a clinical pathologist. However, this procedure relies on manual observation and often provides inaccurate results. This research proposes an automated system for diagnosing Acute Lymphoblastic Leukemia disease using a convolutional neural network technique. For this purpose, simulation work has been performed over the Acute Lymphoblastic Leukemia-IDB 1 and Leukemia-lDB 2 datasets. However, data augmentation techniques have been employed to generate images to handle the overfitting problem in the model. Qualitative analysis has been performed by visualizing the intermediate layer activation, ConvNet filters and heatmap layers, and a comparative study has been performed with existing methods to validate the efficiency of our proposed model. However, the results showed that our proposed model attained 99.61% accuracy in Acute Lymphoblastic Leukemia diagnosis. The high accuracy reveals that it provides a more effective way to detect Acute Lymphoblastic Leukemia disease than existing works reported in the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

There is no data available to share.

References

  1. Abdeldaim AM, Sahlol AT, Elhoseny M et al (2018) Computer-Aided Acute Lymphoblastic Leukemia Diagnosis System Based on Image Analysis, Springer International Publishing, Cham, pp 131–147. https://doi.org/10.1007/978-3-319-63754-97

  2. Abhishek A, Jha RK, Sinha R et al (2022) Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques. Biomedical Signal Processing and Control 72:103341. https://doi.org/10.1016/j.bspc.2021.103341

  3. Abhishek A, Jha RK, Sinha R et al (2023) Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by grad-CAM visualization. Biomed Signal Process Control 83:104722. https://doi.org/10.1016/j.bspc.2023.104722

  4. Ahmed N, Yigit A, Isik Z et al (2019) Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics (Basel) 9(3):104

    Article  PubMed  Google Scholar 

  5. Ali K, Shaikh ZA, Khan AA, Laghari AA (2022) Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci Inform 2(4):100034

    Article  Google Scholar 

  6. Al-jaboriy SS, Sjarif NNA, Chuprat S et al (2019) Acute lymphoblastic leukemia segmentation using local pixel information. Pattern Recogn Lett 125:85–90. https://doi.org/10.1016/j.patrec.2019.03.024

  7. Ambati LS, El-Gayar O (2021) Human activity recognition: a comparison of machine learning approaches. J Midwest Assoc Inf Syst (JMWAIS). 2021(1):4

  8. Ambati LS, El-Gayar OF, Nawar N (2021) Design principles for multiple sclerosis mobile Self-management applications: a patient-centric perspective. AMCIS 2021

  9. Ambati LS, El-Gayar OF, Nawar N (2020) Influence of the digital divide and socio-economic factors on prevalence of diabetes. Issues Inf Syst 21(4):103–113

    Google Scholar 

  10. Ananthu KS, Krishna Prasad P, Nagarajan S et al (2022) Acute lymphoblastic leukemia detection using transfer learning techniques. In: Raj JS, Palanisamy R, Perikos I, et al (eds) Intelligent Sustainable Systems. Springer Singapore, Singapore, pp 679–692

  11. Burke JS (1978) The value of the bone-marrow biopsy in the diagnosis of hairy cell leukemia. Am J Clin Pathol 70(6):876–884

    Article  CAS  PubMed  Google Scholar 

  12. Chand S, Vishwakarma VP (2022) A novel deep learning framework (DLF) for classification of acute lymphoblastic leukemia. Multimed Tools Appl 81(26):37243–37262. https://doi.org/10.1007/s11042-022-13543-2

    Article  Google Scholar 

  13. Chen K, Franko K, Sang R (2021) Structured model pruning of convolutional networks on tensor processing units. CoRR abs/2107.04191. https://arxiv.org/abs/2107.04191.2107.04191

  14. Chen Y, Wu C, Zhang Z et al (2019) PlacentaNet: Automatic morphological characterization of placenta photos with deep learning. In: Shen D, Liu T, Peters TM et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, pp 487–495

    Chapter  Google Scholar 

  15. Das S, Adhikary A, Laghari AA, Mitra S (2023) Eldo-Care: EEG with Kinect Sensor based Telehealthcare for the Disabled and the Elderly. Neurosci Inform 3(2):100130

  16. Das PK, Meher S (2021) An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Syst Appl 183:115311. https://doi.org/10.1016/j.eswa.2021.115311

  17. Das PK, Pradhan A, Meher S (2021) Detection of acute lymphoblastic leukemia using machine learning techniques. In: Gopi ES (ed) Machine Learning, Deep 2Learning and Computational Intelligence for Wireless Communication. Springer Singapore, Singapore, pp 425–437

  18. Dhal KG, Gálvez J, Ray S et al (2020) Acute lymphoblastic leukemia image segmentation driven by stochastic fractal search. Multimed Tools Appl 79(17):12227–12255. https://doi.org/10.1007/s11042-019-08417-z

    Article  Google Scholar 

  19. Dhal KG, Ray S, Barik S et al (2023) Illumination-free clustering using improved slime mould algorithm for acute lymphoblastic leukemia image segmentation. J Bionic Eng. https://doi.org/10.1007/s42235-023-00392-4

  20. El-Gayar OF, Ambati LS, Nawar N (2020) Wearables, artificial intelligence, and the future of healthcare. In: AI and Big Data’s Potential for Disruptive Innovation. IGI Global, pp 104–129

  21. Hagos YB, Narayanan PL, Akarca AU et al (2019) ConCORDe-Net: Cell count regularized convolutional neural network for cell detection in multiplex immunohistochemistry images. In: Shen D, Liu T, Peters TM et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, pp 667–675

    Chapter  Google Scholar 

  22. Hallböök H, Gustafsson G, Smedmyr B et al (2006) Treatment outcome in young adults and children >10 years of age with acute lymphoblastic leukemia in sweden: a comparison between a pediatric protocol and an adult protocol. Cancer 107(7):1551–1561

  23. Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 2261–2269

  24. Islam N, Saeed U, Naz R et al (2019) DeepDR: An image guideddiabetic retinopathy detection technique using attention-based deep learning scheme. In: 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS), pp 1–6. https://doi.org/10.1109/ICTCS.2019.8923097

  25. Jawahar M, Sharen H, Jani Anbarasi L et al (2022) ALNett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification. Comput Biol Med 148:105894. https://doi.org/10.1016/j.compbiomed.2022.105894

  26. Jha KK, Dutta HS (2019) Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Comput Methods Programs Biomed 179:104987. https://doi.org/10.1016/j.cmpb.2019.104987. https://www.sciencedirect.com/science/article/pii/S0169260718317802.

  27. Karim S, Qadir A, Farooq U, Shakir M, Laghari AA (2022) Hyperspectral Imaging: A Review and Trends towards Medical Imaging. Curr Med Imaging 19(5):417–427

  28. Khandekar R, Shastry P, Jaishankar S et al (2021) Automated blast cell detection for acute lymphoblastic leukemia diagnosis. Biomed Signal Process Control 68:102690. https://doi.org/10.1016/j.bspc.2021.102690

  29. Klingebiel T, Cornish J, Labopin M et al (2010) Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the acute leukemia and pediatric disease working parties of the european blood and marrow transplant group. Blood 115(17):3437–3446

  30. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  31. Kumar K, Saeed U, Rai A et al (2020) IDC breast cancer detection using deep learning schemes. Adv Data Sci Adapt Anal 12(02):2041002. https://doi.org/10.1142/S2424922X20410028

    Article  Google Scholar 

  32. Labati RD, Piuri V, Scotti F (2011) All-IDB: The acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing. IEEE, pp 2045–2048

  33. Laghari AA, Yin S (2022) How to collect and interpret medical pictures captured in highly challenging environments that range from nanoscale to hyperspectral imaging. Curr Med Imaging. https://doi.org/10.2174/1573405619666221228094228

  34. Lipshutz MD, Mir R, Rai KR et al (1980) Bone marrow biopsy and clinical staging in chronic lymphocytic leukemia. Cancer 46(6):1422–1427

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Chen P, Zhang J et al (2021) Weakly supervised ternary stream data augmentation fine-grained classification network for identifying acute lymphoblastic leukemia. Diagnostics (Basel) 12(1):16

    Article  PubMed  Google Scholar 

  36. Liu Y, Long F (2019) Acute lymphoblastic leukemia cells image analysis with deep bagging ensemble learning. In: Gupta A, Gupta R (eds) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. Springer Singapore, Singapore, pp 113–121

  37. Masoudi B (2023) VKCS: a pre-trained deep network with attention mechanism to diagnose acute lymphoblastic leukemia. Multimed Tools Appl 82(12):18967–18983. https://doi.org/10.1007/s11042-022-14212-0

    Article  Google Scholar 

  38. Mishra S, Majhi B, Sa PK (2019) Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 47:303–311. https://doi.org/10.1016/j.bspc.2018.08.012

  39. Mishra S, Majhi B, Sa PK et al (2017) Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection. Biomed Signal Process Control 33:272–280. https://doi.org/10.1016/j.bspc.2016.11.021

  40. Mishra S, Sharma L, Majhi B et al (2017) Microscopic image classification using DCT for the detection of acute lymphoblastic leukemia (all). In: Raman B, Kumar S, Roy PP, et al (eds) Proceedings of International Conference on Computer Vision and Image Processing. Springer Singapore, Singapore, pp 171–180

  41. Muhammad G, Saeed U, Islam N et al (2022) Gvdeepnet: Unsupervised deep learning techniques for effective genetic variant classification. Pakistan J Eng Technol 5(1):16–22. https://doi.org/10.51846/vol5iss1pp16-22

  42. Muntasa A, Yusuf M (2019) Modeling of the acute lymphoblastic leukemia detection based on the principal object characteristics of the color image. Procedia Computer Science 157:87–98. https://doi.org/10.1016/j.procs.2019.08.145

  43. Narjim S, Al Mamun A, Kundu D (2020) Diagnosis of acute lymphoblastic leukemia from microscopic image of peripheral blood smear using image processing technique. In: Bhuiyan T, Rahman MM, Ali MA (eds) Cyber Security and Computer Science. Springer International Publishing, Cham, pp 515–526

    Chapter  Google Scholar 

  44. Pałczyński K, Smigiel S, Gackowska M et al (2021) IoT application of transfer learning in hybrid artificial intelligence systems for acute lymphoblastic leukemia classification. Sensors (Basel) 21(23):8025

    Article  ADS  PubMed  Google Scholar 

  45. Peng C, Lin WA, Liao H et al (2020) SAINT: Spatially aware interpolation NeTwork for medical slice synthesis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  46. Piuri V, Scotti F (2005) Morphological classification of blood leucocytes by microscope images. In: 2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA. IEEE, pp. 103–108

  47. Prellberg J, Kramer O (2019) Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. In: Gupta A, Gupta R (eds) ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging. Springer Singapore, Singapore, pp 53–61

  48. Ramaneswaran S, Srinivasan K, Vincent PMDR et al (2021) Hybrid inception v3 xgboost model for acute lymphoblastic leukemia classification. Comput Math Methods Med 2021:2577375. https://doi.org/10.1155/2021/2577375

    Article  Google Scholar 

  49. Rawat J, Singh A, Bhadauria HS et al (2017) Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl 76(18):19057–19085

    Article  Google Scholar 

  50. Rehman A, Abbas N, Saba T et al (2018) Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech 81(11):1310–1317

    Article  PubMed  Google Scholar 

  51. Rejula MA, Amutha S, Shilpa GM (2023) Classification of acute lymphoblastic leukemia using improved ANFIS. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-15113-6

  52. Rodrigues LF, Backes AR, Travençolo BAN et al (2022) Optimizing a deep residual neural network with genetic algorithm for acute lymphoblastic leukemia classification. J Digit Imaging 35(3):623–637. https://doi.org/10.1007/s10278-022-00600-3

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sadafi A, Koehler N, Makhro A et al (2019) Multiclass deep active learning for detecting red blood cell subtypes in brightfield microscopy. In: Shen D, Liu T, Peters TM et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, pp 685–693

    Chapter  Google Scholar 

  54. Saeed U, Kumar K, Laghari AA et al (2021) A comparative analysis of classification techniques for human activity recognition using wearable sensors and smart-phones. EAI Endorsed Trans Pervasive Health Technol 8(30). https://doi.org/10.4108/eai.2-11-2021.171752

  55. Scotti F (2006) Robust segmentation and measurements techniques of white cells in blood microscope images. In: 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings. IEEE, pp 43–48

  56. Scotti F (2005) Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. In: CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005. IEEE, pp 96–101

  57. Shafique S, Tehsin S (2018) Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat 17:1533033818802789

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  59. Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7(6):e577–e577. https://doi.org/10.1038/bcj.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuba E, Strumberger I, Bacanin N et al (2019) Acute lymphoblastic leukemia cell detection in microscopic digital images based on shape and texture features. In: Tan Y, Shi Y, Niu B (eds) Advances in Swarm Intelligence. Springer International Publishing, Cham, pp 142–151

    Chapter  Google Scholar 

  61. Vogado LH, Veras RM, Araujo FH et al (2018) Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng Appl Artif Intell 72:415–422. https://doi.org/10.1016/j.engappai.2018.04.024

  62. Wang X, Xu M, Li L et al (2019) Pathology-aware deep network visualization and its application in glaucoma image synthesis. In: Shen D, Liu T, Peters TM et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, pp 423–431

    Chapter  Google Scholar 

  63. Wang J, Zhang M (2020) DeepFLASH: An efficient network for learning-based medical image registration. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  64. Wang D, Zhang Y, Zhang K et al (2020) FocalMix: Semi-supervised learning for 3D medical image detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  65. Xie S, Girshick R, Dollar P et al (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  66. Yang C, Gao F (2019) EDA-Net: Dense Aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22, pp. 246-254. Springer International Publishing, 2019.

  67. Yu Q, Yang D, Roth H et al (2020) C2FNAS: Coarse-to-fine neural architecture search for 3D medical image segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  68. Zhang Y, Chen H, Wei Y et al (2019) From whole slide imaging to microscopy: Deep microscopy adaptation network for histopathology cancer image classification. In: Shen D, Liu T, Peters TM et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing, Cham, pp 360–368

    Chapter  Google Scholar 

  69. Zhao S, Dong Y, Chang E et al (2019) Recursive cascaded networks for unsupervised medical image registration. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE

  70. Zhou Y, He X, Huang L et al (2019) Collaborative learning of semi-supervised segmentation and classification for medical images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Ali Laghari.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest for this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Pseudo Code of Proposed Architecture

Appendix 1 Pseudo Code of Proposed Architecture

Table 5

Table 5 Algo 1: Pseudo Code Proposed Architecture

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, U., Kumar, K., Khuhro, M.A. et al. DeepLeukNet—A CNN based microscopy adaptation model for acute lymphoblastic leukemia classification. Multimed Tools Appl 83, 21019–21043 (2024). https://doi.org/10.1007/s11042-023-16191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16191-2

Keywords

Navigation