Skip to main content
Log in

Low-level feature image retrieval using representative images from minimum spanning tree clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Typical content-based image retrieval systems retrieve images based on comparison of low-level features such as images color, texture, and shapes of objects in the images. Further, the image covariance descriptor (CD) and the image Patch Relational Covariance Descriptor (PRCD) can be used to summarize low–level features and the visual arrangement to improve the precision of the retrieval. Nonetheless, comparing images based on those two descriptors is computationally expensive. Therefore, this research proposes a clustering method that dynamically groups database images using the Minimum Spanning Tree Clustering algorithm (MSTC). The technique is named Representative Images from Minimum Spanning Tree Clustering (RIMSTC). In the proposed technique, only the representative images selected from each cluster are compared with the input image . Experimental results demonstrated that the proposed representative images by COV and PRCD combined with RIMSTC helps to improve the retrieval time while maintaining comparable retrieval performance to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 6
Algorithm 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bank D, Koenigstein N, Giryes R (2020) Autoencoders. Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (stat.ML)

  2. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. Comput Vis-ECCV 2006 3951:404–417. https://doi.org/10.1007/11744023_32

    Article  Google Scholar 

  3. Cao Z et al (2021) Multi-modality fusion learning for the automatic diagnosis of optic neuropathy. Pattern Recogn Letters 142:58–64. https://www.sciencedirect.com/science/article/pii/S0167865520304402. https://doi.org/10.1016/j.patrec.2020.12.009

    Article  Google Scholar 

  4. Chen T et al (2021) Discriminative cervical lesion detection in colposcopic images with global class activation and local bin excitation. IEEE J Biomed Health Inform PP

  5. Chen J et al (2021) A transfer learning based super-resolution microscopy for biopsy slice images: the joint methods perspective. IEEE/ACM Trans Comput Biol Bioinforma 18(1):103–113. https://doi.org/10.1109/TCBB.2020.2991173

    Google Scholar 

  6. Deselaers T, Pimenidis L, Ney H (2008) Bag-of-visual-words models for adult image classification and filtering

  7. Dokmanic I, Parhizkar R, Ranieri J, Vetterli M (2015) Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Proc Mag 32(6):12–30. 10.1109/MSP.2015.2398954

    Article  Google Scholar 

  8. Dupret G, Piwowarski B (2013) Model based comparison of discounted cumulative gain and average precision. J Discrete Algorithm 18:49–62. https://doi.org/10.1016/j.jda.2012.10.002, selected papers from the 18th International Symposium on String Processing and Information Retrieval (SPIRE 2011)

    Article  MathSciNet  Google Scholar 

  9. Faulkner H et al (2015) A study of the region covariance descriptor. Impact of feature selection and image transformations

  10. Feng R et al (2021) A deep learning approach for colonoscopy pathology WSI analysis: accurate segmentation and classification. IEEE J Biomed Health Inform 25(10):3700–3708

    Article  Google Scholar 

  11. Graham R, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7(1):43–57. https://doi.org/10.1109/MAHC.1985.10011

    Article  MathSciNet  Google Scholar 

  12. J A, R S (2022) A faster secure content-based image retrieval using clustering for cloud. Expert Syst Appl 189:116070. https://www.sciencedirect.com/science/article/pii/S0957417421014093. https://doi.org/10.1016/j.eswa.2021.116070

    Article  Google Scholar 

  13. Jamshed M, Parvin S, Akter S (2015) Significant hog-histogram of oriented gradient feature selection for human detection. Int J Comput Appl 132:20–24. https://doi.org/10.5120/ijca2015907704

    Google Scholar 

  14. Kanagala H, Krishnaiah V (2016) A comparative study of k-means dbscan and optics

  15. Karacan L, Erdem E, Erdem A (2013) Structure-preserving image smoothing via region covariances. ACM Trans Graph 32(6). https://doi.org/10.1145/2508363.2508403

  16. Khunsongkiet P, Bootkrajang J, Techawut C (2020) Patch relational covariance distance similarity approach for image ranking in content–based image retrieval

  17. Križaj J, Dobrisek S, Štruc V (2022) Making the most of single sensor information: a novel fusion approach for 3d face recognition using region covariance descriptors and gaussian mixture models. Sensors 22:2388. https://doi.org/10.3390/s22062388

    Article  Google Scholar 

  18. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50. https://doi.org/10.2307/2033241, full publication date: Feb. 1956

    Article  MathSciNet  Google Scholar 

  19. kumar Panda S, Panda CS (2019) A review on image classification using bag of features approach. Int J Comput Sci Eng 7:538–542. https://doi.org/10.26438/ijcse/v7i6.538542

    Google Scholar 

  20. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118. https://doi.org/10.1109/TIP.2009.2015682

    Article  MathSciNet  Google Scholar 

  21. Lindeberg T (2012) Scale invariant feature transform. Scholarpedia 7:10491. 10.4249/scholarpedia.10491

    Article  Google Scholar 

  22. Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282. https://www.sciencedirect.com/science/article/pii/S0031320306002184. https://doi.org/10.1016/j.patcog.2006.04.045

    Article  Google Scholar 

  23. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content–based image retrieval with high–level semantics. Pattern Recogn 40(1):262–282. https://doi.org/10.1016/j.patcog.2006.04.045

    Article  Google Scholar 

  24. Lowe DG (2004) Distinctive image features from scale–invariant keypoints. Int J Comput Vis 60:91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  25. Lu Y, Zhang L, Tian Q, Ma W-Y (2008) What are the high-level concepts with small semantic gaps?

  26. Memar Kouchehbagh S, Suriani Affendey L, Mustapha N, Doraisamy SC, Ektefa M, Lukose D, Ahmad AR, Suliman A (2012) (eds) High level semantic concept retrieval using a hybrid similarity method. In: Lukose D, Ahmad AR, Suliman A (eds) Knowledge technology. Springer, Berlin, pp 262–271

  27. Nguyen-Quoc H, Hoang VT (2021) A revisit histogram of oriented descriptor for facial color image classification based on fusion of color information. J Sens 2021:6296505. https://doi.org/10.1155/2021/6296505

    Article  Google Scholar 

  28. Pachghare V (2016) Microservices architecture for cloud computing. J Inf Technol Sci 2:13

    Google Scholar 

  29. Peters G, Wilkinson JH (1970) Ax = lambda bx and the generalized eigenproblem. SIAM J Numeric Anal 7(4):479–492. https://doi.org/10.1137/0707039

    Article  Google Scholar 

  30. Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Technic J 36(6):1389–1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

    Article  Google Scholar 

  31. Rajinikanth V, Kadry S, Crespo RG, Verdú E (2021) A study on rgb image multi-thresholding using kapur/tsallis entropy and moth-flame algorithm. Int J Interact Multimed Artif Intell 7:163–171. https://doi.org/10.9781/ijimai.2021.11.008

    Google Scholar 

  32. Rakesh C, Sarma C, Jha M (2015) Document clustering using k-means and k-medoids

  33. Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. arXiv:1409.0575

  34. Shikha B, Pandove G, Dahiya P (2020) An extreme learning machine-relevance feedback framework for enhancing the accuracy of a hybrid image retrieval system. Int J Interact Multimed Artif Intell 6:15–27. https://doi.org/10.9781/ijimai.2020.01.002

    Google Scholar 

  35. Sulic VS, Perš J, Kristan M, Kovacic S (2010) Histogram of oriented gradients and region covariance descriptor in hierarchical feature–distribution scheme. In: Proceedings of the 19th international electrotechnical and computer science conference (ERK2010) vol 2010. http://vision.fe.uni-lj.si/docs/danas/SulicERK2010FINAL.pdf

  36. Tuzel O, Porikli F, Meer P (2006) Region covariance: a fast descriptor for detection and classification

  37. Ulutagay G, Nasibov E (2008) Fn-dbscan: a novel density-based clustering method with fuzzy neighborhood relations

  38. Wu H, Wu W, Peng J, Zhang J (2017) A novel image retrieval algorithm based on phog and lsh. International Journal of Computer Applications. aRTICLES YOU MAY BE INTERESTED IN Research on image retrieval algorithm based on LBP and LSH AIP Conference A Novel Image Retrieval Algorithm based on PHOG and LSH, vol. 1864, p. 20058, 2017. https://doi.org/10.1063/1.4992874

  39. Xiao J, Xu H, Gao H, Bian M, Li Y (2021) A weakly supervised semantic segmentation network by aggregating seed cues: the multi-object proposal generation perspective. ACM Trans Multimed Comput Commun Appl 17:1–19. https://doi.org/10.1145/3419842

    Article  Google Scholar 

  40. Yan K, Wang Y, Liang D, Huang T, Tian Y (2016) Cnn vs. sift for image retrieval. Alternative or complementary?

  41. Yang X, Gao X, Song B, Han B (2021) Hierarchical deep embedding for aurora image retrieval. IEEE Trans Cybernet 51(12):5773–5785. https://doi.org/10.1109/TCYB.2019.2959261

    Article  Google Scholar 

Download references

Funding

The authors declare that no grants supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyavach Khunsongkiet.

Ethics declarations

Competing interests

Non-financial interests: No funding was received for conducting this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Piyavach Khunsongkiet, Jakramate Bootkrajang and Churee Techawut are contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khunsongkiet, P., Bootkrajang, J. & Techawut, C. Low-level feature image retrieval using representative images from minimum spanning tree clustering. Multimed Tools Appl 83, 3335–3356 (2024). https://doi.org/10.1007/s11042-023-15605-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15605-5

Keywords

Navigation