Skip to main content
Log in

A survey on infrared image & video sets

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this survey, we compile a list of publicly available infrared image and video sets for artificial intelligence and computer vision researchers. We mainly focus on IR image and video sets, which are collected and labelled for computer vision applications such as object detection, object segmentation, classification, and motion detection. We categorise 109 publicly available or private sets according to their sensor types, image resolution, and scale. We describe each set in detail regarding their collection purpose, operation environment, optical system properties, and application area. We also cover a general overview of fundamental concepts related to IR imagery, such as IR radiation, IR detectors, IR optics and application fields. We analyse the statistical significance of the entire corpus from different perspectives. This survey will be a guideline for computer vision and artificial intelligence researchers who want to delve into working with the spectra beyond the visible domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The dataset generated during the current study is available from the corresponding author upon reasonable request.

Notes

  1. Multispectral image sets collected with satellites are left out of the scope of this survey paper. We believe that multispectral satellite imagery is a category that requires a unique focus due to differences in IR imaging in vision practices, perspective, atmospheric effects and applications.

  2. ATRAN module input parameters are selected as, observatory altitude: 13800 feet (Mauna Kea (red) at an altitude of 13.8K feet and 3.4 mm water vapour), observatory latitude: 39 degrees, water vapour overburden: 0 microns, standard atmosphere with 2 Layers, Zenith angle: 45 degrees, smoothing resolution: 1000.

References

  1. (2018) Multi-modal dataset for hand gesture recognition. Available at https://www.kaggle.com/gti-upm/multimodhandgestrec

  2. (2020) Thermal images - diseased & healthy leaves - paddy. Available at https://www.kaggle.com/sujaradha/thermal-images-diseased-healthy-leaves-paddy?select=thermal+images+UL

  3. Akula A, Khanna N, Ghosh R et al (2014) Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences. Infrared Phys Technol 63:103–109. Available at http://vcipl-okstate.org/pbvs/bench/

    Article  Google Scholar 

  4. Alaska Fisheries Science Center (accessed on 2022) A dataset for machine learning algorithm development. Available at https://lila.science/datasets/noaa-arctic-seals-2019/

  5. Alqattan M (2020) A dataset of raw thermal, visible and night vision images for illegal fishers in the kuwaiti bay. https://doi.org/10.17632/69ncy4nxsg.1, Available at https://data.mendeley.com/datasets/69ncy4nxsg/1

  6. Aniket A (2022) bird dataset. Available at https://universe.roboflow.com/antiuav-9-aniket/bird-6le8u

  7. Ariffin S M Z S Z, Jamil N, Rahman P N M A (2016) Diast variability illuminated thermal and visible ear images datasets. In: 2016 Signal processing: algorithms, architectures, arrangements, and applications (SPA), pp 191–195. https://doi.org/10.1109/SPA.2016.7763611, Available at http://vcipl-okstate.org/pbvs/bench/

  8. Ashfaq Q, Akram U, Zafar R (2021) Thermal image dataset for object classification. https://doi.org/10.17632/btmrycjpbj.1, Available at https://data.mendeley.com/datasets/btmrycjpbj/1

  9. AV-Public (2022) All thermal dataset. Available at https://universe.roboflow.com/avpublic/all_ther

  10. Bagavathiappan S, Lahiri BB, Saravanan T et al (2013) Infrared thermography for condition monitoring - a review. Infrared Phys Technol 60:35–55

    Article  Google Scholar 

  11. Bahnsen C H, Moeslund T B (2018) Rain removal in traffic surveillance: does it matter? IEEE Trans Intell Transp Syst, 1–18. https://doi.org/10.1109/TITS.2018.2872502. Available at https://www.kaggle.com/aalborguniversity/aau-rainsnow/

  12. Benes R, Dvorak P, Faundez-Zanuy M et al (2013) Multi-focus thermal image fusion. Pattern Recogn Lett 34(5):536–544. Available at http://splab.cz/en/download/databaze/multi-focus-thermal-image-database

    Article  Google Scholar 

  13. Berg A, Ahlberg J, Felsberg M (2015) A thermal object tracking benchmark. In: 2015 12th IEEE international conference on advanced video and signal based surveillance (AVSS). Available at http://www.cvl.isy.liu.se/en/research/datasets/ltir/version1.0/

  14. Bernhard J, Barr J, Bowyer K W et al (2015) Near-ir to visible light face matching: Effectiveness of pre-processing options for commercial matchers. In: 2015 IEEE 7th International conference on biometrics theory, applications and systems (BTAS), pp 1–8. https://doi.org/10.1109/BTAS.2015.7358780, Available at https://cvrl.nd.edu/projects/data/

  15. Bertozzi M, Broggi M V G D R M (2006) Low-level pedestrian detection by means of visible and far infra-red tetra-vision. Maintained by http://vislab.it/

  16. Bilodeau G-A, Torabi A, St-Charles P-L et al (2014) Thermal–visible registration of human silhouettes: a similarity measure performance evaluation. Infrared Phys Technol 64:79–86. Available at http://vcipl-okstate.org/pbvs/bench/

    Article  Google Scholar 

  17. Bondi E, Jain R, Aggrawal P et al (2020) Birdsai: a dataset for detection and tracking in aerial thermal infrared videos. In: WACV. Available at https://sites.google.com/view/elizabethbondi/dataset

  18. Boreman G D (1998) Basic electro-optics for electrical engineers, vol 31. SPIE Press

  19. Brown M, Süsstrunk S (2011) Multispectral SIFT for scene category recognition. In: Computer Vision and Pattern Recognition (CVPR11), Colorado Springs, pp 177–184. Available at https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.html

  20. Buser R G, Tompsett M F (1997) Historical overview. In: Semiconductors and Semimetals, vol 47. Elsevier, pp 1–16

  21. Chen X, Flynn P, Bowyer K (2005) Ir and visible light face recognition. Comput Vis Image Underst 99:332–358. https://doi.org/10.1016/j.cviu.2005.03.001. Available at https://cvrl.nd.edu/projects/data/

    Article  Google Scholar 

  22. Chingovska I, Erdogmus N, Anjos A et al (2016) Face recognition systems under spoofing attacks. Springer International Publishing, Cham, pp 165–194. https://doi.org/10.1007/978-3-319-28501-6_8, Available at https://www.idiap.ch/en/dataset/msspoof

    Google Scholar 

  23. Clerke A M (2003) A popular history of astronomy during the nineteenth century. Sattre Pr

  24. Coşar S, Yan Z, Zhao F et al (2018) Thermal camera based physiological monitoring with an assistive robot. In: 2018 40th Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 5010–5013. https://doi.org/10.1109/EMBC.2018.8513201, Available at https://lcas.lincoln.ac.uk/wp/research/data-sets-software/

  25. Computer Vision and Biometrics Lab. (2022) Multimodal biometrics dataset thermal face images. Available at https://cvbl.iiita.ac.in/dataset.php

  26. Cosar S, Bellotto N (2019) Human re-identification with a robot thermal camera using entropy-based sampling. Journal of Intelligent & Robotic Systems. https://doi.org/10.1007/s10846-019-01026-w, Available at https://lcas.lincoln.ac.uk/wp/research/data-sets-software/l-cas-rgb-d-t-re-identification-dataset/

  27. D’Angelo E, Herbin S, Ratieville M (2006) Robin challenge. Available at https://robin.inrialpes.fr/testsdefinitions.php

  28. Daniels A (2018) Field guide to infrared optics, materials, and radiometry, vol FG39. SPIE

  29. Davis J W, Keck M A (2005) A two-stage template approach to person detection in thermal imagery. In: 2005 Seventh IEEE workshops on applications of computer vision (WACV/MOTION’05), vol 1. IEEE, pp 364–369. Available at http://vcipl-okstate.org/pbvs/bench/

  30. Davis J W, Sharma V (2007) Background-subtraction using contour-based fusion of thermal and visible imagery. Comput Vis Image Understand 106(2-3):162–182. Available at http://vcipl-okstate.org/pbvs/bench/

    Article  Google Scholar 

  31. Dodge S F, Karam L J (2017) A study and comparison of human and deep learning recognition performance under visual distortions. arXiv:1705.02498

  32. Erazo-Aux J, Loaiza-Correa H, Restrepo-Giron A D et al (2020) Thermal imaging dataset from composite material academic samples inspected by pulsed thermography. Data Brief 32:106313. https://doi.org/10.1016/j.dib.2020.106313, https://europepmc.org/articles/PMC7508994, Available at https://data.mendeley.com/datasets/v4knrwgj9y/2

    Article  Google Scholar 

  33. Faundez-Zanuy M, Mekyska J, Espinosa-Duró V (2011) On the focusing of thermal images. Pattern Recogn Lett 32:1548–1557. https://doi.org/10.1016/j.patrec.2011.04.022, Available at http://splab.cz/en/download/databaze/thermal-focus-image-database

    Article  Google Scholar 

  34. Faundez-Zanuy M, Mekyska J, Font X (2013) A new hand image database simultaneously acquired in visible, near-infrared and thermal spectrums. Cogn Comput, 6. https://doi.org/10.1007/s12559-013-9230-3, Available at http://splab.cz/en/download/databaze/carl-database

  35. FLIR (2022) Free flir thermal dataset for algorithm training. Available at https://www.flir.com/oem/adas/adas-dataset-form/

  36. Gade R, Moeslund T B (2018) Constrained multi-target tracking for team sports activities. IPSJ Trans Comput Vis Applic 10(1):1–11. Available at https://www.kaggle.com/aalborguniversity/thermal-soccer-dataset

    Google Scholar 

  37. Gao C, Du Y, Liu J et al (2016) Infar dataset: infrared action recognition at different times. Neurocomputing 212:36–47. https://doi.org/10.1016/j.neucom.2016.05.094, Available at https://drive.google.com/file/d/0B8URzo24xElURU1Oa0ctYmpaTlk/view?usp=sharing&resourcekey=0-6EOSjRX7_Ea-14tJorumrg

    Article  Google Scholar 

  38. Garcia L, Diaz J, Loaiza Correa H et al (2020) Thermal and visible aerial imagery. https://doi.org/10.17632/ffgxxzx298.2, Available at https://data.mendeley.com/datasets/ffgxxzx298/2

  39. Gebhardt E, Wolf M (2018) Camel dataset for visual and thermal infrared multiple object detection and tracking. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, pp 1–6. Available at https://camel.ece.gatech.edu/

  40. Ghayoumi zadeh H, Haddadnia J, Seryasat OR et al (2016) Segmenting breast cancerous regions in thermal images using fuzzy active contours. https://doi.org/10.17877/DE290R-17666, Available at http://database.irthermo.ir/

  41. Ghayoumi zadeh H, Namdari F, Dadpay M et al (2017) Evaluation of thermal imaging in the diagnosis and classification of varicocele. Iran J Med Phys 14:114–121. https://doi.org/10.22038/ijmp.2017.20753.1200, Available at http://database.irthermo.ir/

    Google Scholar 

  42. Ghiass R, Bendada H, Maldague X (2018) Université laval face motion and time-lapse video database (ul-fmtv). https://doi.org/10.21611/qirt.2018.051. Available at http://www.qirt.org/liens/FMTV.htm

  43. Gonzalez Alzate A, Fang Z, Socarras Y et al (2016) Pedestrian detection at day/night time with visible and fir cameras: A comparison. Sensors 16:820. https://doi.org/10.3390/s16060820

    Article  Google Scholar 

  44. Ha Q, Watanabe K, Karasawa T et al (2017) Mfnet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 5108–5115. https://doi.org/10.1109/IROS.2017.8206396, Available at https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/

  45. HACARUS Inc. (2020) Near infrared hyperspectral image dataset. Available at https://www.kaggle.com/hacarus/near-infrared-hyperspectral-image

  46. HAMAMATSU PHOTONICS K.K. (2011) Solid State Division. Characteristics and Use of Infrared Dedectors. Tech. rep.

  47. Haque M A, Bautista R B, Noroozi F et al (2018) Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, pp 250–257. Available at https://vap.aau.dk/mintpain-database/

  48. He Y, Deng B, Wang H et al (2021) Infrared machine vision and infrared thermography with deep learning: a review. Infrared Phys Technol 116

  49. Hou F, Zhang Y, Zhou Y et al (2022) Review on infrared imaging technology. Sustainability 14:18. https://doi.org/10.3390/su141811161, https://www.mdpi.com/2071-1050/14/18/11161

  50. Huda N U, Hansen B D, Gade R et al (2020) The effect of a diverse dataset for transfer learning in thermal person detection. Sensors 20:7. Available at https://www.kaggle.com/noorulhuda90/aaupdt

    Article  Google Scholar 

  51. Hudson RD, Hudson JW, Levinstein H (1976) Infrared detectors. Phys Today 29(3):59

    Article  Google Scholar 

  52. Hui B, Song Z, Fan H et al (2019) A dataset for infrared image dim-small aircraft target detection and tracking under ground / air background. https://doi.org/10.11922/sciencedb.902, Available at https://www.scidb.cn/en/detail?dataSetId=720626420933459968&dataSetType=journal

  53. Hwang S, Park J, Kim N et al (2015) Multispectral pedestrian detection: benchmark dataset and baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1037–1045. Available at https://soonminhwang.github.io/rgbt-ped-detection/

  54. Iwashita Y, Nakashima K, Stoica A et al (2019) Tu-net and tdeeplab: deep learning-based terrain classification robust to illumination changes, combining visible and thermal imagery, pp 280–285. https://doi.org/10.1109/MIPR.2019.00057, Available at http://robotics.ait.kyushu-u.ac.jp/~yumi/db/jpl_marsyard_db.html

  55. Jia X, Zhu C, Li M et al (2021) Llvip: a visible-infrared paired dataset for low-light vision. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3496–3504. Available at https://bupt-ai-cz.github.io/LLVIP/

  56. Karasawa T, Watanabe K, Ha Q et al (2017) Multispectral object detection for autonomous vehicles. Proceedings of the on Thematic Workshops of ACM Multimedia 2017. Available at https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/

  57. Karim A, Andersson J Y (2013) Infrared detectors: advances, challenges and new technologies. In: IOP Conference series: materials science and engineering, vol 51. IOP Publishing, p 012001

  58. Kong S, Heo J, Boughorbel F et al (2007) Multiscale fusion of visible and thermal ir images for illumination-invariant face recognition. Int J Comput Vision 71:215–233. https://doi.org/10.1007/s11263-006-6655-0, Available at http://vcipl-okstate.org/pbvs/bench/

    Article  Google Scholar 

  59. Korki14 (2022) Drones dataset. Available at https://universe.roboflow.com/korki14/drones-srdze

  60. Kristan M, Matas J, Leonardis A et al (2016) A novel performance evaluation methodology for single-target trackers. IEEE Trans Pattern Anal Mach Intell 38(11):2137–2155. https://doi.org/10.1109/TPAMI.2016.2516982, Available at https://www.votchallenge.net/vot2019/dataset.html

    Article  Google Scholar 

  61. Krišto M, Ivasic-Kos M, Pobar M (2020) Thermal object detection in difficult weather conditions using yolo. IEEE Access 8:125459–125476. https://doi.org/10.1109/ACCESS.2020.3007481, Available at https://dx.doi.org/10.21227/yec9-yy29

    Article  Google Scholar 

  62. Kruse PW (1995) A comparison of the limits to the performance of thermal and photon detector imaging arrays. Infrared Phys Technol 36(5):869–882. https://doi.org/10.1016/1350-4495(95)00014-P, https://www.sciencedirect.com/science/article/pii/135044959500014P

    Article  Google Scholar 

  63. Kumar A, Srikanth T (2008) Online personal identification in night using multiple face representations. In: 2008 19th International conference on pattern recognition, pp 1–4. https://doi.org/10.1109/ICPR.2008, Available at https://www4.comp.polyu.edu.hk/~csajaykr/IITD/FaceIR.htm

  64. Lee A J, Cho Y, Shin Ys et al (2019) Vivid: vision for visibility dataset. Available at https://visibilitydataset.github.io/

  65. Li S Z, Chu R, Liao S et al (2007) Illumination invariant face recognition using near-infrared images. IEEE Trans Pattern Anal Mach Intell 29 (4):627–639. Available at http://vcipl-okstate.org/pbvs/bench/

    Article  Google Scholar 

  66. Liu H, Bao C, Xie T et al (2019) Research on the intelligent diagnosis method of the server based on thermal image technology. Infrared Phys Technol 96:390–396. Available at https://www.kaggle.com/liuhangaz/thermal-images-of-the-server

    Article  Google Scholar 

  67. Liu Q, He Z (2018) PTB-TIR: a thermal infrared pedestrian tracking benchmark. arXiv:1801.05944. Available at https://github.com/QiaoLiuHit/PTB-TIR_Evaluation_toolkit

  68. Liu Q, Li X, He Z et al (2020) Lsotb-tir: a large-scale high-diversity thermal infrared object tracking benchmark. https://doi.org/10.1145/3394171.3413922, Available at https://github.com/QiaoLiuHit/LSOTB-TIR

  69. Lord S D (1992) A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation. NASA Technical Memorandum 103957

  70. Mantecon T, Del-Blanco C, Jaureguizar F et al (2016) Hand gesture recognition using infrared imagery provided by leap motion controller. 10016, 47–57. https://doi.org/10.1007/978-3-319-48680-2_5, Available at https://www.kaggle.com/gti-upm/leapgestrecog

  71. Miezianko R (accessed on 2022) Terravic research infrared database. Available at http://vcipl-okstate.org/pbvs/bench/

  72. Miron A (2014) Multi-modal, multi-domain pedestrian detection and classification: proposals and explorations in visible over stereovision, fir and swir. Available at https://zenodo.org/record/3754168#.YIvye7UzZPa

  73. Mohd Asaari M S, Suandi S A, Rosdi B (2014) Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics. Expert Syst Appl 41:3367–3382. https://doi.org/10.1016/j.eswa.2013.11.033, Available at http://drfendi.com/fv_usm_database/

    Article  Google Scholar 

  74. Morris N, Avidan S, Matusik W et al (2007) Statistics of infrared images, 1–7. https://doi.org/10.1109/CVPR.2007.383003, Available at http://www.dgp.toronto.edu/~nmorris/IR/

  75. Naik S (2019) Thermal mango image dataset - flir one. https://doi.org/10.17632/vksfkmphzs.1, Available at https://data.mendeley.com/datasets/vksfkmphzs/1

  76. Najafi M, Baleghi Y, Mirimani S M (2021) Thermal images dataset, transformer, 1 phase dry type. https://doi.org/10.17632/8mg8mkc7k5.2, Available at https://data.mendeley.com/datasets/8mg8mkc7k5/2

  77. Nelson J (2020) Thermal dogs and people object detection dataset. Available at https://public.roboflow.com/object-detection/thermal-dogs-and-people

  78. Olmeda D, Premebida C, Nunes U et al (2013) Pedestrian detection in far infrared images. Integr Comput-Aided Eng, 20. https://doi.org/10.3233/ICA-130441, Available at https://e-archivo.uc3m.es/handle/10016/17370

  79. Palmero C, Clapés A, Holmberg Bahnsen C et al (2016) Multi-modal rgb-depth-thermal human body segmentation. Int J Comput Vision, 118. https://doi.org/10.1007/s11263-016-0901-x, Available at https://vap.aau.dk/vap-trimodal-people-segmentation-dataset/

  80. Panetta K, Wan Q, Agaian S et al (2018) A comprehensive database for benchmarking imaging systems. IEEE Trans Pattern Anal Mach Intell 42(3):509–520. Available at https://www.kaggle.com/kpvisionlab/tufts-face-database?select=file_1

    Article  Google Scholar 

  81. Parr A C, Datla R, Gardner J (2005) Optical radiometry, vol 41. Elsevier

  82. Patino L, Cane T, Vallee A et al (2016) Pets 2016: dataset and challenge. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 1–8. Available at http://www.cvg.reading.ac.uk/PETS2016/a.html

  83. Perpetuini D, Filippini C, Cardone D et al (2021) An overview of thermal infrared imaging-based screenings during pandemic emergencies. Int J Environ Res Public Health 18:6

    Article  Google Scholar 

  84. Piñeiro-Ave J, Blanco-Velasco M, Cruz-Roldán F et al (2014) Target detection for low cost uncooled mwir cameras based on empirical mode decomposition. Infrared Phys Technol 63:222–231

    Article  Google Scholar 

  85. Pini S, D’Eusanio A, Borghi G et al (2020) Baracca: a multimodal dataset for anthropometric measurements in automotive. In: Proceedings of the International joint Conference on Biometrics (IJCB). Available at https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=37

  86. Portmann J, Lynen S, Chli M et al (2014) People detection and tracking from aerial thermal views. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp 1794–1800. Available at https://projects.asl.ethz.ch/datasets/doku.php?id=ir%3Airicra2014

  87. Prasad D K, Rajan D, Rachmawati L, Rajabally E et al (2017) Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey. IEEE Trans Intell Transp Syst 18(8):1993–2016. https://doi.org/10.1109/TITS.2016.2634580, Available at https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset

    Article  Google Scholar 

  88. Projects R U (2022) People detection - thermal dataset. Available at https://universe.roboflow.com/roboflow-universe-projects/people-detection-thermal

  89. Rivadeneira R E, Sappa A D, Vintimilla B X (2020) Thermal image super-resolution: a novel architecture and dataset. In: International conference on computer vision theory and applications, pp 1–2. Available at https://github.com/rafariva/ThermalDatasets

  90. Rivadeneira R E, Suárez P L, Sappa A D, Vintimilla B X (2019) Thermal image superresolution through deep convolutional neural network. In: International conference on image analysis and recognition. Springer, pp 417–426. Available at https://github.com/rafariva/ThermalDatasets

  91. Roboflow (2020) Thermal cheetah object detection dataset. Available at https://public.roboflow.com/object-detection/thermal-cheetah

  92. Rogalski A (1997) Infrared thermal detectors versus photon detectors: I. Pixel performance. In: Sizov F F, Tetyorkin V V (eds) Material science and material properties for infrared optoelectronics, vol 3182. SPIE, pp 14–25. https://doi.org/10.1117/12.280417

  93. Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43(3-5):187–210

    Article  Google Scholar 

  94. Schneider P, Anisimov Y, Islam R et al (2022) Timo—a dataset for indoor building monitoring with a time-of-flight camera. Sensors 22:11. https://doi.org/10.3390/s22113992, https://www.mdpi.com/1424-8220/22/11/3992, Available at https://vizta-tof.kl.dfki.de/timo-dataset-overview/

  95. Sedik A, Abd El-Rahiem B, Abd El-Samie F et al (2020) Mbd: multi-biometric dataset. https://doi.org/10.17632/94ksjgbwnz.1, Available at https://data.mendeley.com/datasets/94ksjgbwnz/1

  96. SENSIAC (2008) Military sensing information analysis center (sensiac). Available at https://www.sensiac.org/external/products/list_databases/

  97. Shahroudy A, Liu J, Ng T-T et al (2016) Ntu rgb+ d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1010–1019. Available at https://rose1.ntu.edu.sg/dataset/actionRecognition/

  98. Shamsoshoara A, Afghah F, Razi A et al (2021) Aerial imagery pile burn detection using deep learning: The flame dataset. Comput Netw 193:108001. https://doi.org/10.1016/j.comnet.2021.108001, Available at https://dx.doi.org/10.21227/qad6-r683

    Article  Google Scholar 

  99. Silva A, Calado C (2020) Thermal and optical behavior dataset of surfaces coated with high reflectance and common materials under different conditions, used in brazil. Data Brief 30:105445. https://doi.org/10.1016/j.dib.2020.105445, Available at https://data.mendeley.com/datasets/gnhjwsf6jf/2

    Article  Google Scholar 

  100. Socarras Y, Ramos S, Vazquez D et al (2013) Adapting pedestrian detection from synthetic to far infrared images. Available at http://adas.cvc.uab.es/elektra/enigma-portfolio/item-1/

  101. Soundrapandiyan R, Satapathy S C, P.V.S.S.R. C M et al (2022) A comprehensive survey on image enhancement techniques with special emphasis on infrared images. Multimed Tools Applic 81(7):9045–9077. https://doi.org/10.1007/s11042-021-11250-y

    Article  Google Scholar 

  102. Sousa E, Vardasca R, Teixeira S et al (2017) A review on the application of medical infrared thermal imaging in hands. Infrared Phys Technol 85:315–323. https://doi.org/10.1016/j.infrared.2017.07.020, https://www.sciencedirect.com/science/article/pii/S1350449517304024

    Article  Google Scholar 

  103. Speth J, Vance N, Czajka A et al (2021) Deception detection and remote physiological monitoring: a dataset and baseline experimental results. Available at https://cvrl.nd.edu/projects/data/

  104. Strat T (2005) Vivid tracking evaluation web site. Available at http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html

  105. Strohmayer J, Pramerdorfer C, Kampel M (2020) Sdt: a synthetic multi-modal dataset for person detection and pose classification. Available at https://zenodo.org/record/4124309#.YWlGKRpBxPZ

  106. Sun X, Guo L, Zhang W et al (2021) A dataset for small infrared moving target detection under clutter background. v1. Available at https://datapid.cn/31253.11.sciencedb.j00001.00231

  107. Teutsch M, Sappa A D, Hammoud R I (2021) Computer vision in the infrared spectrum: challenges and approaches. Synth Lect Comput Vis 10(2):1–138

    Google Scholar 

  108. Toet A, IJspeert JK, Waxman AM, Aguilar M (1997) Fusion of visible and thermal imagery improves situational awareness. Displays 18(2):85–95. https://doi.org/10.1016/S0141-9382(97)00014-0, Available at https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029?file=37872186

    Article  Google Scholar 

  109. Toet A (2002) Detection of dim point targets in cluttered maritime backgrounds through multisensor image fusion. In: Targets and Backgrounds VIII: Characterization and Representation, vol 4718. International Society for Optics and Photonics, pp 118–129. Available at https://figshare.com/articles/dataset/Kayak_image_fusion_sequence_Part_I/1007650

  110. Toet A, Hogervorst M A, Pinkus A R (2016) The triclobs dynamic multiband image dataset. Available at https://figshare.com/articles/dataset/The_TRICLOBS_Dynamic_Multiband_Image_Dataset/3206887/1

  111. Tu Z, Ma Y, Li Z et al (2020) Rgbt salient object detection: a large-scale dataset and benchmark. arXiv:2007.03262. Available at https://github.com/lz118/RGBT-Salient-Object-Detection

  112. UMDAMAV-Dataset (2022) Thermal overhead dataset. Available at https://universe.roboflow.com/umdamavdataset/thermal_overhead

  113. Venkataraman B, Raj B (2003) Performance parameters for thermal imaging systems. Insight-Non-Destructive Testing and Condition Monitoring 45 (8):531–535

    Article  Google Scholar 

  114. Visual Lab. (accessed on 2022) Thermal images for breast cancer diagnosis. Available at http://712visual.ic.uff.br/en/proeng/thiagoelias/

  115. Vollmer M, Möllmann K-P (2017) Infrared thermal imaging: fundamentals, research and applications. Wiley

  116. Wang Y, Jodoin P-M, Porikli F et al (2014) Cdnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 387–394. Available at http://jacarini.dinf.usherbrooke.ca/dataset2014/

  117. Treible W, Saponaro P, Sorensen S et al (2017) Cats: a color and thermal stereo benchmark. In: Conference on Computer Vision and Pattern Recognition (CVPR). Available at http://bigdatavision.org/CATS/download.html

  118. Westlake S T, Volonakis T N, Jackman J et al (2020) Deep learning for automatic target recognition with real and synthetic infrared maritime imagery. In: Artificial intelligence and machine learning in defense applications II, vol 11543. International Society for Optics and Photonics, p 1154309. Available at https://cord.cranfield.ac.uk/articles/dataset/IRShips/12800324

  119. Wu Z, Fuller N, Theriault D et al (2014) A thermal infrared video benchmark for visual analysis. In: 2014 IEEE Conference on computer vision and pattern recognition workshops, pp 201–208. https://doi.org/10.1109/CVPRW.2014.39, Available at http://csr.bu.edu/BU-TIV/BUTIV.html

  120. Xiang S (2020) Spindle thermal error prediction approach based on thermal infrared images: a deep learning method. https://doi.org/10.21227/vwp1-q708, Available at https://dx.doi.org/10.21227/vwp1-q708

  121. Xu Z, Zhuang J, Liu Q et al (2019) Benchmarking a large-scale fir dataset for on-road pedestrian detection. Infrared Phys Technol 96:199–208. https://doi.org/10.1016/j.infrared.2018.11.007, Available at https://github.com/SCUT-CV/SCUT_FIR_Pedestrian_Dataset

    Article  Google Scholar 

  122. Yaman M, Kalkan S (2015) An iterative adaptive multi-modal stereo-vision method using mutual information. Available at https://kovan.ceng.metu.edu.tr/MMStereoDataset/

  123. Yoon J S, Park K, Hwang S et al (2016) Thermal-infrared based drivable region detection. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, pp 978–985. Available at https://sites.google.com/site/drivableregion/

  124. Zhang H, Luo C, Wang Q et al (2018) A novel infrared video surveillance system using deep learning based techniques. Multimed Tools Applic 77 (20):26657–26676. Available at http://www.lpi.tel.uva.es/AALARTDATA

    Article  Google Scholar 

  125. Zhang L, Rui Y (2013) Image search—from thousands to billions in 20 years. ACM Trans Multimed Comput Commun Appl 9:1s. https://doi.org/10.1145/2490823

    Article  Google Scholar 

  126. Zhang M M, Choi J, Daniilidis K et al (2015) Vais: a dataset for recognizing maritime imagery in the visible and infrared spectrums. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 10–16. https://doi.org/10.1109/CVPRW.2015.7301291, Available at http://vcipl-okstate.org/pbvs/bench/

  127. Zukal M, Mekyska J, Cika P, Smekal Z (2013) Interest points as a focus measure in multi-spectral imaging. Radioengineering 22:68–81. Available at http://splab.cz/en/download/databaze/multispec

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevser Irem Danaci.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 List of Abbreviations

CT

Computerised Tomography

CTE

Coefficient of Thermal Expansion

D*

Detectivity

E

Emissivity

ES

Electromagnetic Spectrum

FHD

Full High Definition

FIR

Far-Infrared

FLIR

Forward Looking Infrared

FOV

Field-of-View

FPA

Focal Plane Array

HD

High Definition

HE

Histogram Equalization

IR

Infrared

LD

Low Definition

LWIR

Long-Wave Infrared

Mil.&Sur.

Military & Surveillance

MR

Magnetic Resonance

MWIR

Mid-Wave Infrared

NEP

Noise-Equivalent-Power

NIR

Near-Infrared

pri

Private Dataset

pub

Public Dataset

RGB

Red-Green-Blue

rr

Dataset that Requires Registration

SAR

Synthetic Aperture Radar

SD

Standard Definition

SNR

Signal-to-Noise Ratio

SWIR

Short-Wave Infrared

UHD

Ultra High Definition

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaci, K.I., Akagunduz, E. A survey on infrared image & video sets. Multimed Tools Appl 83, 16485–16523 (2024). https://doi.org/10.1007/s11042-023-15327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15327-8

Keywords

Navigation