Skip to main content
Log in

Analysis of retinal blood vessel segmentation techniques: a systematic survey

  • Track 1: General Multimedia Topics
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Segmentation of Blood Vessel is a challenging mission in medical image processing to diagnose the disease. It evaluates vessels crucial in automatic retinal vessel extraction with different methodologies, techniques and algorithms to predict the diseases such as Laryngology, neurosurgery and ophthalmology. Using a computer-aided technique, segmentation of blood vessels is conducted in the retina closer to the clinical application routine. This research aims to provide an overview of numerous retinal vessel segmentation approaches, analyse different categories of segmentation techniques, provide a brief description, and evaluate the performance measures. It also reviews, examines, and classifies the procedures, techniques, and methodologies and highlights the important points. The main intention is to provide the reader with a framework for the existing research, introduce the range of retinal vessel segmentation procedures, deliberate the current trends and future directions and summarize the open problems. First, retinal image photography is introduced from the fundus camera. Pre-processing operations and methods of identifying retinal vessels on computer-aided techniques are introduced and discussed to validate results based on the evaluation of various segmentation techniques. The performance of various segmentation techniques and algorithms is estimated using a publicly present database such as DRIVE, STARE, HRF, CHASE, Infant and MESSIDOR. The performance and comparison of various algorithms are assessed in average accuracy, sensitivity, specificity and ROC curves. A huge volume of techniques is considered based on retinal vessel segmentation published in current years. A systematic review is constructed by considering the publications from 2001 to 2021, focusing on methods based on automatic vessel segmentation and classification using fundus camera images. The advantages and limitations are discussed, and tables are included for summarising results at-a-glance. Then an attempt is made to measure the quantitative merit of segmentation methods in terms of accuracy development compared to other methods. Finally, it represented the recent trends with the future direction and summarized the open challenge issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abdallah MB, Malek J, Krissian K, Tourki R (2011) An automated vessel segmentation of retinal images using multiscale vesselness. In: Eighth International Multi-Conference on Systems, Signals Devices 1–6. https://doi.org/10.1109/SSD.2011.5767376

  2. Adapa D, Raj ANJ, Alisetti SN, Zhuang Z, Naik G (2020) A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features. PLoS ONE 15(3):e0229831. https://doi.org/10.1371/journalpone0229831

    Article  Google Scholar 

  3. Adel M, Rasigni M, Gaidon T, Fossati C, Bourennane S (2009)Statistical-based linear vessel structure detection in medical images. In: 2009 16th IEEE International Conference on Image Processing (ICIP) 649–652. https://doi.org/10.1109/ICIP.2009.5413396

  4. Akhavan R, Faez K (2014) A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. Int J Electr Comput Eng 4:561–572. https://doi.org/10.11591/ijece.v4i4.6253

    Article  Google Scholar 

  5. Akram MU, Tariq A, Khan SA (2009) Retinal image blood vessel segmentation. In: 2009 International Conference on Information and Communication Technologies 181–192. https://doi.org/10.1109/ICICT.2009.5267194

  6. Albargathe SMBK, Kamberli E, Kandemirli F, Rahebi J (2021) Blood vessel segmentation and extraction using H-minima method based on image processing techniques. Multimed Tools Appl 80(2):2565–2582. https://doi.org/10.1007/s11042-020-09646-3

    Article  Google Scholar 

  7. Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28:1488–1497. https://doi.org/10.1109/TMI.2009.2017941

    Article  Google Scholar 

  8. Ali A, Zaki WMDW, Hussain A (2019) Retinal blood vessel segmentation from retinal image using b-cosfire and adaptive thresholding Indonesian. J Electr Eng Comput Sci 13:1199–1207. https://doi.org/10.11591/ijeecs.v13.i3.pp1199-1207

    Article  Google Scholar 

  9. Almotiri J, Elleithy K, Elleithy A (2018) A multi-anatomical retinal structure segmentation system for automatic eye screening using morphological adaptive fuzzy thresholding. IEEE J Transl Eng Health Med 6:1–23. https://doi.org/10.1109/JTEHM.2018.2835315

    Article  Google Scholar 

  10. Al-Rawi M, Qutaishat M, Arrar M (2007) An improved matched filter for blood vessel detection of digital retinal images. Comput Biol Med 37:262–267. https://doi.org/10.1016/j.compbiomed.2006.03.003

    Article  Google Scholar 

  11. Amin MA, Yan H (2011) High speed detection of retinal blood vessels in fundus image using phase congruency. Soft Comput 15:1217–1230

    Article  Google Scholar 

  12. An C, Wang Y, Zhang J, Bartsch D-UG, Freeman WR (2020) Fovea localization neural network for multimodal retinal imaging. In: Applications of Machine Learning, 11511: 196–202. SPIE. https://doi.org/10.1117/12.2569858

  13. Anzalone A, Bizzarri F, Parodi M, Storace M (2008) A modular supervised algorithm for vessel segmentation in red-free retinal images. Comput Biol Med 38:913–922. https://doi.org/10.1016/j.compbiomed.2008.05.006

    Article  Google Scholar 

  14. Aswini S, Suresh A, Priya S, Krishna BS (2018) Retinal vessel segmentation using morphological top hat approach on diabetic retinopathy images. In: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics(AEEICB) 1–5. https://doi.org/10.1109/AEEICB.2018.8480970

  15. Ayala G, León T, Zapater V (2011) Different averages of a fuzzy set with an application to vessel segmentation. IEEE Trans Fuzzy Syst 384–393. https://doi.org/10.1109/TFUZZ.2004.839667

  16. Balasubramanian K, Ananthamoorthy NP (2021) Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. J Ambient Intell Humaniz Comput 12(3):3559–3569

    Article  Google Scholar 

  17. Bansal M, Kumar M, Sachdeva M, Mittal A (2021) Transfer learning for image classification using VGG19: Caltech-101 image data set. J Ambient Intell Humaniz Comput 1–12. https://doi.org/10.1007/s12652-021-03488-z

  18. Bansal M, Kumar M, Kumar M, Kumar K (2021) An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Comput 25(6):4423–4432. https://doi.org/10.1007/s00500-020-05453-y

    Article  Google Scholar 

  19. Boudegga H, Elloumi Y, Akil M, Bedoui MH, Kachouri R, Abdallah AB (2021) Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput Med Imaging Graph 90:101902

    Article  Google Scholar 

  20. Budai A, Michelson G, Hornegger J (2010) Multiscale blood vessel segmentation in retinal fundus images. Bildverarbeitung fur die Medizin, Aachen, 261–265

  21. Bühler K, Felkel P, Cruz AL (2003) Geometric methods for vessel visualization and quantification - a survey, geometric modelling for scientific visualization, vol 399. Springer, Berlin

    Google Scholar 

  22. Chakraborty S, Shukla D, Mishra B, Singh S (2009)Lipid–an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73(1):1–15. https://doi.org/10.1016/j.ejpb.2009.06.001

    Article  Google Scholar 

  23. Chakraborty S, Chatterjee S, Dey N, Ashour AS, Shi F (2017) Gradient approximation in retinal blood vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), 618–623

  24. Chanwimaluang T, Fan G (2003) An efficient algorithm for extraction of anatomical structures in retinal images. Conference on Image Processing (Cat. No.03CH37429), Barcelona, Spain 1091: 1093–1096. https://doi.org/10.1109/ICIP.2003.1247157

  25. Chatterjee I, Agarwal M, Rana B, Lakhyani N, Kumar N (2018)Bi-objective approach for computer-aided diagnosis of schizophrenia patients using fMRI data. Multimed Tools Appl 77(20):26991–27015

    Article  Google Scholar 

  26. Cheng Y, Ma M, Zhang L, Jin C, Ma L, Zhou Y (2020) Retinal blood vessel segmentation based on Densely Connected U-Net. Math Biosci Eng 17(4):3088–3108. https://doi.org/10.3934/mbe.2020175

    Article  MATH  Google Scholar 

  27. Chhabra P, Garg NK, Kumar M (2020)Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32(7):2725–2733. https://doi.org/10.1007/s00521-018-3677-9

    Article  Google Scholar 

  28. Christodoulidis A, Hurtut T, Tahar HB, Cheriet F (2016) A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Comput Med Imaging Graph 52:28–43. https://doi.org/10.1016/j.compmedimag.2016.06.001

    Article  Google Scholar 

  29. Cinsdikici MG, Aydın D (2009) Detection of blood vessels in ophthalmoscope images using mf/ant (matched filter/ant colony. Comput Methods Programs Biomed 96:85–95. https://doi.org/10.1016/j.cmpb.2009.01.003

    Article  Google Scholar 

  30. Dada EG, Joseph SB (2018) Unsupervised retinal blood vessel segmentation technique using pdapso and difference image methods for detection of diabetic retinopathy. Covenant J Inf Commun Technol 6(2):64–78

  31. Dasgupta A, Singh S (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp 248–251. https://doi.org/10.1109/ISBI.2017.7950512

  32. Dash J, Bhoi N (2017) A thresholding based technique to extract retinal blood vessels from fundus images. Future Comput Inf J 2:103–109. https://doi.org/10.1016/j.fcij.2017.10.001

    Article  Google Scholar 

  33. Dash J, Bhoi N (2019) Retinal blood vessel extraction using morphological operators and Kirsch’s template. In: Soft Computing and Signal Processing. Springer, Singapore 603–611. https://doi.org/10.1007/978-981-13-3600-3_57

  34. Dash S, Verma S, Khan M, Wozniak M, Shafi J, Ijaz MF (2021) A hybrid method to enhance thick and thin vessels for blood vessel segmentation. Diagnostics 11(11):2017. https://doi.org/10.3390/diagnostics11112017

  35. Dash S, Senapati MR, Sahu PK, Chowdary PSR (2021) Illumination normalized based technique for retinal blood vessel segmentation. Int J Imaging Syst Technol 31(1):351–363. https://doi.org/10.1002/ima.22461

    Article  Google Scholar 

  36. De J, Cheng L, Zhang X, Lin F, Li H, Ong KH, Ahmed S (2016) A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Trans Med Imaging 257–272. https://doi.org/10.1109/TMI.2015.2465962

  37. Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N (2010) Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed 100(2):108–122. https://doi.org/10.1016/j.cmpb.2010.03.004

    Article  Google Scholar 

  38. Dizdaro B, Ataer-Cansizoglu E, Kalpathy-Cramer J, Keck K, Chiang MF, Erdogmus D (2012) Level sets for retinal vasculature segmentation using seeds from ridges and edges from phase maps. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing 1–6. https://doi.org/10.1109/MLSP.2012.6349730

  39. dos Santos JCM, Carrijo GA, de Fátima dos Santos Cardoso C, Ferreira JC, Sousa PM, Patrocínio AC (2020) Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Res Biomed Eng 36(2):107–119. https://doi.org/10.1109/UPCON.2017.8251120

    Article  Google Scholar 

  40. Elangovan P, Nath MK (2021) Glaucoma assessment from color fundus images using convolutional neural network. Int J Imaging Syst Technol 31(02):955–971. https://doi.org/10.1002/ima.22494

    Article  Google Scholar 

  41. Elangovan P, Vijayalakshmi D, Nath MK (2021) Detection of glaucoma from fundus image using pre-trained Densenet201 model. Indian J Radio Space Phys (IJRSP)NiScPR-CSIR 50(1):33–39. http://nopr.niscair.res.in/handle/123456789/58080

  42. Emary E, Zawbaa HM, Hassanien AE, Schaefer G, Azar AT (2014) Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimised with cuckoo search. In: 2014 International Joint Conference on Neural Networks (IJCNN) 1792–1796. https://doi.org/10.1109/IJCNN.2014.6889932

  43. Espona L, Carreira MJ, Ortega M, Penedo MG (2007) A snake for retinal vessel segmentation. Pattern Recognition and Image Analysis. IbPRIA 2007. Springer, Berlin, p 4478

    Google Scholar 

  44. Espona L, Carreira MJ, Penedo MG, Ortega M (2008) Retinal vessel tree segmentation using a deformable contour model. In: 2008 19th International Conference on Pattern Recognition 1–4. https://doi.org/10.1109/ICPR.2008.4761762

  45. Farnell DJ, Hatfield FN, Knox P, Reakes M, Spencer S, Parry D, Harding SP (2008) Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Frankl Inst 345:748–765. https://doi.org/10.1016/j.jfranklin.2008.04.009

    Article  MATH  Google Scholar 

  46. Faust O, Acharya UR, Ng EYK, Ng KH, Suri JS (2010) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36:1–13

    Google Scholar 

  47. Fielder A, Cocker K (2007) Automatic extraction of the structure of the retinal blood vessel network of premature infants. J Med Assoc Thai 90:1780–1792

    Google Scholar 

  48. Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Owen CG (2012) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 108(2):600–616. https://doi.org/10.1016/j.cmpb.2011.08.009

    Article  Google Scholar 

  49. Gang L, Chutatape O, Krishnan SM (2002) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order gaussian filter. IEEE Trans Biomed Eng 49:168–172

    Article  Google Scholar 

  50. Gao J, Chen G, Lin W (2020) An effective retinal blood vessel segmentation by using automatic random walks based on centerline extraction. Biomed Res Int 2020:1–11. https://doi.org/10.1155/2020/7352129

    Article  Google Scholar 

  51. Garg D, Garg NK, Kumar M (2018) Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimed Tools Appl 77(20):26545–26561. https://doi.org/10.1007/s11042-018-5878-8

    Article  Google Scholar 

  52. Ghosh SK, Ghosh A (2021) A novel retinal image segmentation using rSVM boosted convolutional neural network for exudates detection. Biomed Signal Process Control 68:102785. https://doi.org/10.1016/j.bspc.2021.102785

    Article  Google Scholar 

  53. Gong H, Li Y, Liu G, Wu W, Chen G (2015) A level set method for retina image vessel segmentation based on the local cluster value via bias correction. In: 2015 8th International Congress on Image and Signal Processing (CISP) 413–417. https://doi.org/10.1109/CISP.2015.7407915

  54. Gu L, Cheng L (2015) Learning to boost _lamentary structure segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV) 639–647

  55. Guo S, Wang K, Kang H, Zhang Y, Gao Y, Li T (2019) Btsdsn: Deeply supervised neural network with short connections for retinal vessel segmentation. Int J Med Inform 126:105–113. https://doi.org/10.1016/j.ijmedinf.2019.03.015

    Article  Google Scholar 

  56. Hassan G, El-Bendary N, Hassanien AE, Fahmy A, Snasel V (2015) Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 65:612–622

    Article  Google Scholar 

  57. Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19:203–210

    Article  Google Scholar 

  58. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X (2018) Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179–191. https://doi.org/10.1016/j.neucom.2018.05.011

    Article  Google Scholar 

  59. Jiang X, Mojon D (2003) Adaptive local thresholding by verification-based multi threshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25:131–137

    Article  Google Scholar 

  60. Jiang Z, Yepez J, An S, Ko S (2017) Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 37:412–421. https://doi.org/10.1016/j.bbe.2017.04.001

    Article  Google Scholar 

  61. Jiang Y, Zhang H, Tan N, Chen L (2019) Automatic retinal blood vessel segmentation based on fully convolutional neural networks. Symmetry 11(9):1112

    Article  Google Scholar 

  62. Kande GB, Subbaiah PV, Savithri TS (2010) Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J Med Syst 34:849–858

    Article  Google Scholar 

  63. Karn PK, Biswal B, Samantaray SR (2019) Robust retinal blood vessel segmentation using hybrid active contour model. IET Image Proc 13(3):440–450

    Article  Google Scholar 

  64. Kaur J, Sinha DH (2012) Automated detection of retinal blood vessels in diabetic retinopathy using gabor filter. Int J Comput Sci Netw Secur 12:109

    Google Scholar 

  65. Khan TM, Robles-Kelly A, Naqvi SS (2020) A semantically flexible feature fusion network for retinal vessel segmentation. In International Conference on Neural Information Processing, 159–167. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_18

  66. Khawaja A, Khan TM, Khan MA, Nawaz SJ (2019)Multi-scale directional line detector for retinal vessel segmentation. Sensors 19:4949. https://doi.org/10.3390/s19224949

    Article  Google Scholar 

  67. Khomri B, Christodoulidis A, Djerou L, Babahenini MC, Cheriet F (2018) Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Proc 12(12):2163–2171

    Article  Google Scholar 

  68. Kumar A, Yadav R, Ranvijay A (2011) Fault tolerance in real time distributed system. Int J Comput Sci Eng 3(2):933–939

    Google Scholar 

  69. Kumar D, Pramanik A, Kar SS, Maity SP (2016) Retinal blood vessel segmentation using matched lter and laplacian of gaussian. 2016 International Conference on Signal Processing and Communications. SPCOM, 1–5

  70. Kundu A, Chatterjee RK (2012) Retinal vessel segmentation using morphological angular scale-space. 2012 Third International Conference on Emerging Applications of Information Technology, 316–319. https://doi.org/10.1109/EAIT.2012.6407935

  71. Lahiri A, Roy AG, Sheet D, Biswas PK (2016) Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1340–1343. https://doi.org/10.1109/EMBC.2016.7590955

  72. Lam BSY, Yan H (2008) A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans Med Imaging 27:237–246. https://doi.org/10.1109/TMI.2007.909827

    Article  Google Scholar 

  73. Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29:1369–1381. https://doi.org/10.1109/TMI.2010.2043259

    Article  Google Scholar 

  74. Li H, Chutatape O (2000) Fundus image features extraction. 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 4: 3071–3073. https://doi.org/10.1109/IEMBS.2000.901530

  75. Li H, Zhang J, Nie Q, Cheng L (2013) A retinal vessel tracking method based on Bayesian theory. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) 232–235. https://doi.org/10.1109/ICIEA.2013.6566372

  76. Li M, Yin Q, Lu M (2018) Retinal blood vessel segmentation based on multi-scale deep learning. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 1–7

  77. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35:2369–2380. https://doi.org/10.1109/TMI.2016.2546227

    Article  Google Scholar 

  78. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Kennedy RL (2004) Measurement of retinal vessel widths from fundus images based on 2-d modelling. IEEE Trans Med Imaging 23(10):1196–1204

    Article  Google Scholar 

  79. Lupascu CA, Tegolo D, Trucco E (2010) Fabc: Retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14:1267–1274. https://doi.org/10.1109/TITB.2010.2052282

    Article  Google Scholar 

  80. Ma Y, Zhu Z, Dong Z, Shen T, Sun M, Kong W (2021) Multichannel retinal blood vessel segmentation based on the combination of matched filter and U-net network. BioMed Res Int. https://doi.org/10.1155/2021/5561125

  81. Mahadevan V, Narasimha-Iyer H, Roysam B, Tanenbaum HL (2004) Robust model-based vasculature detection in noisy biomedical images. IEEE Trans Inf Technol Biomed 8:360–376. https://doi.org/10.1109/TITB.2004.834410

    Article  Google Scholar 

  82. Maji D, Santara A, Ghosh S, Sheet D, Mitra P (2015) Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. Conf Proc IEEE Eng Med Biol Soc, 3029–3032. https://doi.org/10.1109/EMBC.2015.7319030

  83. Maji D, Santara A, Mitra P, Sheet D (2016) Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv:1603.04833. https://doi.org/10.48550/arXiv.1603.04833

  84. Maninis KK, Pont-Tuset J, Arbeláez P, Gool LV (2016) Deep retinal image understanding. Medical image computing and computer-assisted intervention – MICCAI 2016. MICCAI 2016. Lect Notes Comput Sci 9901:140–148. https://doi.org/10.1007/978-3-319-46723-8_17

  85. Mardani K, Maghooli K (2021) Enhancing retinal blood vessel segmentation in medical images using combined segmentation modes extracted by DBSCAN and morphological reconstruction. Biomed Signal Process Control 69:102837

    Article  Google Scholar 

  86. Marín D, Aquino A, Gegúndez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30:146–158. https://doi.org/10.1109/TMI.2010.2064333

    Article  Google Scholar 

  87. Martinez-Perez ME, Hughes AD, Thom SA, Parker KH (2007) Improvement of a retinal blood vessel segmentation method using the insight segmentation and registration toolkit (itk). In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 892–895. https://doi.org/10.1109/IEMBS.2007.4352434

  88. Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11:47–61. https://doi.org/10.1016/j.media.2006.11.004

    Article  Google Scholar 

  89. Memari N, Ramli AR, Saripan M, Mashohor S, Moghbel M (2019) Retinal blood vessel segmentation by using matched filtering and fuzzy c-means clustering with integrated level set method for diabetic retinopathy assessment. J Med Biol Eng 39:713–731

    Article  Google Scholar 

  90. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. https://doi.org/10.1109/TMI.2006.879955

  91. Miri MS, Mahloojifar A (2011) Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans Biomed Eng 58:1183–1192. https://doi.org/10.1109/TBME.2010.2097599

    Article  Google Scholar 

  92. Moghimirad E, Rezatofighi SH, Soltanian-Zadeh H (2010)Multi-scale approach for retinal vessel segmentation using medialness function. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 29–32. https://doi.org/10.1109/ISBI.2010.5490423

  93. Mustafa WA, Yazid H, Kamaruddin W (2017) Combination of gray-level and moment invariant for automatic blood vessel detection on retinal image. J Biomimetics Biomaterials Biomedical Eng Trans Tech Publications Ltd 34:10–19. https://doi.org/10.4028/www.scientific.net/JBBBE.34.10

    Article  Google Scholar 

  94. Narasimha-Iyer H, Beach JM, Khoobehi B, Roysam B (2007) Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features. IEEE Trans Biomed Eng 54:1427–1435. https://doi.org/10.1109/TBME.2007.900804

    Article  Google Scholar 

  95. Nath MK, Dandapat S, Barna C (2020) Automatic detection of blood vessels and evaluation of retinal disorder from color fundus images. J Intell Fuzzy Syst - IOS Press 38(5):6019–6030. https://doi.org/10.3233/JIFS-179687

  96. Ng J, Clay ST, Barman SA, Fielder AR, Moseley MJ, Parker KH, Paterson C (2010) Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis Comput 28:55–63. https://doi.org/10.1016/j.imavis.2009.04.019

    Article  Google Scholar 

  97. Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Angelopoulou E (2013) Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Process 7:373–383

    Article  Google Scholar 

  98. Ozkava U, Ozturk S, Akdemir B, Sevfi L (2018) An efficient retinal blood vessel segmentation using morphological operations. In: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 1–7. https://doi.org/10.1109/ISMSIT.2018.8567239

  99. Pandey M, Pathak V, Chaudhary B (2012) A framework for interest-based community evolution and sharing of latent knowledge. Int J Grid Util Comput 3(2–3):200–213

    Article  Google Scholar 

  100. Park KB, Choi SH, Lee JY (2020) M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8:146308–146322

    Article  Google Scholar 

  101. Poon K, Hamarneh G, Abugharbieh R (2007) Live-vessel: Extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. Medical Image Computing and Computer-Assisted Intervention MICCAI 2007. MICCAI. Springer, Berlin, p 4792

    Google Scholar 

  102. Prajna Y, Nath MK (2022) Efficient blood vessel segmentation from color fundus image using deep neural network. J Intell Fuzzy Syst 42(4):3477–3489. https://doi.org/10.3233/JIFS-211479

    Article  Google Scholar 

  103. Quek FK, Kirbas C (2001) Vessel extraction in medical images by wave-propagation and traceback. IEEE Trans Med Imaging 20:117–131. https://doi.org/10.1109/42.913178

    Article  Google Scholar 

  104. Ramos-Soto O, Rodríguez-Esparza E, Balderas-Mata SE, Oliva D, Hassanien AE, Meleppat RK, Zawadzki RJ (2021) An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Comput Methods Programs Biomed 201:105949

    Article  Google Scholar 

  105. Rani S, Rajani N, Reddy S (2012) Comparative study on content based image retrieval. Int J Future Comput Commun 1(4):366. https://doi.org/10.7763/IJFCC.2012.V1.97

    Article  Google Scholar 

  106. Rattathanapad S, Mittrapiyanuruk P, Kaewtrakulpong P, Uyyanonvara B, Sinthanayothin C (2012) Vessel extraction in retinal images using multilevel line detection. In: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics 345–349. https://doi.org/10.1109/BHI.2012.6211584

  107. Ravichandran G, Elangovan P, Nath MK (2019) Diagnosis of retinitis pigmentosa from retinal images. Int J Electron Telecommun 65(3):519–525. http://journals.pan.pl/dlibra/publication/129808/edition/113312/content

  108. Reddy YMS, Ravindran RSE (2021) Segmentation of retinal vasculature through composite features and supervised learning. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.12.610

  109. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26:1357–1365. https://doi.org/10.1109/TMI.2007.898551

    Article  Google Scholar 

  110. Roy AG, Sheet D (2016) Dasa: Domain adaptation in stacked autoencoders using systematic dropout. arXiv:1603.06060. https://doi.org/10.1109/ACPR.2015.7486600

  111. Salem SA, Salem NM, Nandi AK (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (racal) with a partial supervision strategy. Med Biol Eng Comput 45:261–273. https://doi.org/10.1007/s11517-006-0141-2

    Article  Google Scholar 

  112. Samuel PM, Veeramalai T (2019) Multilevel and multiscale deep neural network for retinal blood vessel segmentation. Symmetry 11(7):946. https://doi.org/10.3390/sym11070946

    Article  Google Scholar 

  113. Sathananthavathi V, Indumathi G (2021) Encoder enhanced atrous (EEA) unet architecture for retinal blood vessel segmentation. Cogn Syst Res 67:84–95

    Article  Google Scholar 

  114. Sengar S, Mukhopadhyay S (2020) Motion segmentation-based surveillance video compression using adaptive particle swarm optimization. Neural Comput Appl 32(15):11443–11457. https://doi.org/10.1007/s00521-019-04635-6

    Article  Google Scholar 

  115. Shahid M, Taj IA (2018) Robust retinal vessel segmentation using vessel’s location map and Frangi enhancement filter. IET Image Proc 12(4):494–501. https://doi.org/10.1049/iet-ipr.2017.0457

    Article  Google Scholar 

  116. Sharma S, Wasson EV (2015) Retinal blood vessel segmentation using fuzzy logic. Journal of Network Communications and Emerging Technologies 4(3):1–5

  117. Shi C, Liu J, Chen D (2019) A segmentation-oriented inter-class transfer method: Application to retinal vessel segmentation. arXiv:1906.08501. https://doi.org/10.48550/arXiv.1906.08501

  118. Shukla AK, Pandey RK, Pachori RB (2020) A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed Signal Process Control 59:101883

    Article  Google Scholar 

  119. Simó A, de Ves E (2001) Segmentation of macular fluorescein angiographies. a statistical approach. Pattern Recogn 34:795–809. https://doi.org/10.1016/S0031-3203(00)00032-7

    Article  MATH  Google Scholar 

  120. Singh NP, Srivastava R (2016) Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Comput Methods Programs Biomed 129:40–50. https://doi.org/10.1016/j.cmpb.2016.03.001

    Article  Google Scholar 

  121. Singh NP, Srivastava RS (2016) of retinal blood vessels by using a matched filter based on second derivative of gaussian. Int J Biomed Eng Technol 21. https://doi.org/10.1504/IJBET.2016.078286

  122. Singh NP, Srivastava R (2017) Weibull probability distribution function-based matched filter approach for retinal blood vessels segmentation. Book Chapter: Advances in Computational Intelligence: Proceedings of International Conference on Computational Intelligence 2015, 427–437

  123. Singh NP, Srivastava R (2019) Extraction of retinal blood vessels by using an extended matched filter based on second derivative of gaussian. Natl Acad Sci India Sect A Phys Sci 89:269–277

    Article  Google Scholar 

  124. Singh NP, Kumar R, Srivastava R (2015) Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter. International Conference on Computing, Communication Automation 1166–1170. https://doi.org/10.1109/CCAA.2015.7148552

  125. Soares JV, Leandro JJ, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222. https://doi.org/10.1109/TMI.2006.879967

    Article  Google Scholar 

  126. Sofka M, Stewart CV (2006) Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imaging 25:1531–1546. https://doi.org/10.1109/TMI.2006.884190

    Article  Google Scholar 

  127. Solouma N, Youssef ABM, Badr Y, Kadah YM (2001)Real-time retinal tracking for laser treatment planning and administration in medical imaging. SPIE The International Society of Optics and Photonics, Bellingham, 1311–1321. https://doi.org/10.1117/12.431010

  128. Srivastava A, Aggarwal AK (2018) Medical image fusion in spatial and transform domain: a comparative analysis. In: Handbook of Research on Advanced Concepts in Real-Time Image and Video Processing. IGI Global 281–300. https://doi.org/10.4018/978-1-5225-2848-7.ch011

  129. Srivastava P, Khare A (2017) Integration of wavelet transform, local binary patterns and moments for content-based image retrieval. J Vis Commun Image Represent 42:78–103. https://doi.org/10.1016/j.jvcir.2016.11.008

    Article  Google Scholar 

  130. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004)Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509. https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  131. Sum KW, Cheung PY (2008) Vessel extraction under non-uniform illumination: A level set approach. IEEE Trans Biomed Eng 55:358–360. https://doi.org/10.1109/TBME.2007.896587

    Article  Google Scholar 

  132. Sun K, Chen Z, Jiang S, Wang Y (2011) Morphological multiscale enhancement, fuzzy filter and watershed for vascular tree extraction in angiogram. J Med Syst 35:811–824

    Article  Google Scholar 

  133. Sundaram R, Ks R, Jayaraman P (2019) Extraction of blood vessels in fundus images of retina through hybrid segmentation approach. Comput Med Imaging Graph 7:169. https://doi.org/10.3390/math7020169

    Article  Google Scholar 

  134. Tamim N, Elshrkawey M, Abdel Azim G, Nassar H (2020) Retinal blood vessel segmentation using hybrid features and multi-layer perceptron neural networks. Symmetry 12(6):894. https://doi.org/10.3390/sym12060894

    Article  Google Scholar 

  135. Thukral R, Arora AS, Kumar A (2022) Denoising of thermal images using deep neural network. In: Proceedings of International Conference on Recent Trends in Computing, Springer, Singapore, 827–833. https://doi.org/10.1007/978-981-16-7118-0_70

  136. Tiwari R, Husain M, Gupta S, Srivastava A (2010) Improving ant colony optimization algorithm for data clustering. In: Proceedings of the International Conference and Workshop on Emerging Trends in Technology 529–534. https://doi.org/10.1145/1741906.1742026

  137. Toptaş B, Hanbay D (2021) Retinal blood vessel segmentation using pixel-based feature vector. Biomed Signal Process Control 70:103053

    Article  Google Scholar 

  138. Upadhyay K, Agrawal M, Vashist P (2020) Wavelet based fine-to-coarse retinal blood vessel extraction using U-net model. In: 2020 International Conference on Signal Processing and Communications (SPCOM), IEEE 1–5. https://doi.org/10.1109/SPCOM50965.2020.9179575

  139. Verma V, Aggarwal R (2020) A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: empirical and theoretical perspective. Social Netw Anal Min 10(1):1–16. https://doi.org/10.1007/s13278-020-00660-9

    Article  Google Scholar 

  140. Vermeer KA, Vos FM, Lemij HG, Vossepoel AM (2004) A model based method for retinal blood vessel detection. Comput Biol Med 34:209–219. https://doi.org/10.1016/S0010-4825(03)00055-6

    Article  Google Scholar 

  141. Villalobos-Castaldi FM, Felipe-Riverón EM, Sánchez-Fernández LP (2010) A fast, efficient and automated method to extract vessels from fundus images. J Vis 13:263–270

    Article  Google Scholar 

  142. Vlachos M, Dermatas E (2010)Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34:213–227. https://doi.org/10.1016/j.compmedimag.2009.09.006

    Article  Google Scholar 

  143. Wang L, Bhalerao A, Wilson R (2007) Analysis of retinal vasculature using a multiresolution hermite model. IEEE Trans Med Imaging 26:137–152. https://doi.org/10.1109/TMI.2006.889732

    Article  Google Scholar 

  144. Wang C, Oda M, Hayashi Y, Yoshino Y, Yamamoto T, Frangi AF, Mori K (2020) Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Med Image Anal 60:101623. https://doi.org/10.1016/j.media.2019.101623

    Article  Google Scholar 

  145. Winder RJ, Morrow PJ, McRitchie IN, Bailie JR, Hart PM (2009) Algorithms for digital image processing in diabetic retinopathy. Comput Med Imaging Graph 33:608–622. https://doi.org/10.1016/j.compmedimag.2009.06.003

    Article  Google Scholar 

  146. Wink O, Niessen WJ, Viergever MA (2004) Multiscale vessel tracking. IEEE Trans Med Imaging 23:130–133. https://doi.org/10.1109/TMI.2003.819920

    Article  Google Scholar 

  147. Wu CH, Agam G, Stanchev P (2007) A general framework for vessel segmentation in retinal images. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation 37–42. https://doi.org/10.1109/CIRA.2007.382924

  148. Xie S, Nie H (2013) Retinal vascular image segmentation using genetic algorithm plus fcm clustering. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications 1225–1228. https://doi.org/10.1109/ISDEA.2012.289

  149. Xu L, Luo S (2010) A novel method for blood vessel detection from retinal images. Biomed Eng Online 9:9–14

    Article  Google Scholar 

  150. Yang Y, Huang S, Rao N (2008) An automatic hybrid method for retinal blood vessel extraction. Int J Appl Math Comput Sci P02017. https://doi.org/10.2478/v10006-008-0036-5

  151. Yang J, Lou C, Fu J, Feng C (2020) Vessel segmentation using multiscale vessel enhancement and a region based level set model. Comput Med Imaging Graph 85:101783. https://doi.org/10.1016/j.compmedimag.2020.101783

    Article  Google Scholar 

  152. Yao C, Chen HJ (2009) Automated retinal blood vessels segmentation based on simplified pcnn and fast 2d-otsu algorithm. J Cent South Univ Technol 16:640–646

    Article  Google Scholar 

  153. Yedidya T, Hartley R (2008) Tracking of blood vessels in retinal images using kalman filter. 2008 Digit Image Computing: Techniques Appl 52–58. https://doi.org/10.1109/DICTA.2008.72

  154. Yin Y, Adel M, Guillaume M, Bourennane S (2010) A probabilistic based method for tracking vessels in retinal images. In: 2010 IEEE International Conference on Image Processing 4081–4084. https://doi.org/10.1109/ICIP.2010.5650937

  155. You X, Peng Q, Yuan Y, Cheung YM, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44:2314–2324. https://doi.org/10.1016/j.patcog.2011.01.007

    Article  Google Scholar 

  156. Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10:1010–1019. https://doi.org/10.1109/83.931095

    Article  MATH  Google Scholar 

  157. Zhang Y, Hsu W, Lee ML (2009) Detection of retinal blood vessels based on nonlinear projections. J Sign Process Syst Sign Image Video Technol 55:103–112

    Article  Google Scholar 

  158. Zhang B, Zhang L, Zhang L, Karray F (2010) Iretinal vessel extraction by matched filter with first-order derivative of gaussian. Comput Biol Med 40(4):438–445. https://doi.org/10.1016/j.compbiomed.2010.02.008

    Article  Google Scholar 

  159. Zhang J, Tang Z, Gui W, Liu J (2015) Retinal vessel image segmentation based on correlational open active contours model. 2015 Chin Autom Congress (CAC) 993–998. https://doi.org/10.1109/CAC.2015.7382643

  160. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34:1797–1807. https://doi.org/10.1109/TMI.2015.2409024

    Article  Google Scholar 

  161. Zhu T (2010) Fourier cross-sectional profile for vessel detection on retinal images. Comput Med Imaging Graph 34:203–212. https://doi.org/10.1016/j.compmedimag.2009.09.004

    Article  Google Scholar 

  162. Zhu T, Schaefer G (2011) Retinal vessel extraction using a piecewise gaussian scaled model. Conf Proc IEEE Eng Med Biol Soc, 5008–5011. https://doi.org/10.1109/IEMBS.2011.6091241

  163. Zolfagharnasab H, Naghsh-Nilchi AR (2014) Ucauchy based matched filter for retinal vessels detection. J Med Signals Sens 4:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in this work.

Corresponding author

Correspondence to K. Susheel Kumar.

Ethics declarations

Conflict of interest

Authors K Susheel Kumar, Nagendra Pratap Singh declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors involved have agreed to participate in this submitted article.

Consent to publish

All the authors involved in this manuscript give full consent for the publication of this submitted article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.S., Singh, N.P. Analysis of retinal blood vessel segmentation techniques: a systematic survey. Multimed Tools Appl 82, 7679–7733 (2023). https://doi.org/10.1007/s11042-022-13388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13388-9

Keywords

Navigation