Skip to main content
Log in

Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Automatic brain tumor segmentation in magnetic resonance images (MRIs) is an essential stage for treatment planning. However, MR image segmentation is challenging owing to non-uniformity in the intensity distribution, tumor shape, size, and location variation. The paper proposes a new level set method that is called Fuzzy Kernel Level Set (FKLS) for 3D brain tumor segmentation in MR images. To avoid computational complexity, fast bounding box based on symmetry analysis is used to extract the volume of interest (VOI) in brain MRIs. Then, a level set method is proposed based on fuzzy c-means clustering and kernel mapping. A kernel function is used to transfer the image into another domain, where the new proposed functional is minimized. To assess the proposed FKLS method, a synthetic image and natural brain MR images from BraTS 2017 are segmented. Experimental results show that our method is superior to the state-of-the-art segmentation methods regarding the segmentation accuracy based on Dice, Jaccard, Sensitivity, and Specificity metrics. The mean values of these metrics are 97.62% \(\pm\)(0.94%), 95.41% \(\pm\)(1.8%), 98.79% \(\pm\) (0.63%), and 99.85% \(\pm\) (0.09%), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amarapur B (2019) Cognition-based MRI brain tumor segmentation technique using modified level set method. Cogn Technol Work 21(3):357–369

    Article  Google Scholar 

  2. Aswathy SU, Dhas GG, Kumar SS (2015) Quick detection of brain tumor using a combination of EM and level set method. Indian J Sci Technol 8(34)

  3. Bahadure NB,Ray AK, Thethi HP (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging

  4. Bakas S et al (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117

    Article  Google Scholar 

  5. Bakas S et al (2017) Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive 2017, 286

  6. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  7. Castillo LS et al (2017) Volumetric multimodality neural network for brain tumor segmentation. In: 13th International Conference on Medical Information Processing and Analysis. International Society for Optics and Photonics

  8. Catà M et al (2017) Masked V-Net: an approach to brain tumor segmentation. In: 2017 International MICCAI BraTS Challenge. Pre-conference proceedings

  9. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  10. Chen Y, Wu M (2019) A level set method for brain MR image segmentation under asymmetric distributions. Signal Image Video Process 13(7):1421-1429

  11. Essadike A, Ouabida E, Bouzid A (2018) Brain tumor segmentation with Vander Lugt correlator based active contour. Comput Methods Programs Biomed 160:103-117

  12. Fang L, Wang X, Wang L (2020) Multi-modal medical image segmentation based on vector-valued active contour models. Inf Sci 513:504–518

    Article  MathSciNet  Google Scholar 

  13. Hasan AM et al (2016) Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry 8(11):132

    Article  MathSciNet  Google Scholar 

  14. Hashemzehi R, Mahdavi SJ, Kheirabadi M, Kamel SR (2020) Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybern Biomed Eng 40(3):1225–1232

    Article  Google Scholar 

  15. Hussain S, Anwar SM, Majid M (2018) Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261

    Article  Google Scholar 

  16. Ibrahim RW, Hasan AM, Jalab HA (2018) A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput Methods Programs Biomed 163:21–28

    Article  Google Scholar 

  17. Ilunga–Mbuyamba E et al (2017) Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation. Comput Biol Med 91:69–79

    Article  Google Scholar 

  18. Ilunga-Mbuyamba E et al (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 220:84–97

    Article  Google Scholar 

  19. Işın A, Direkoğlu C, Şah M (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324

    Article  Google Scholar 

  20. Kamnitsas K et al (2017) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International MICCAI Brainlesion Workshop. Springer, Berlin

  21. Karnawat A et al (2017) Radiomics-based convolutional neural network (radcnn) for brain tumor segmentation on multi-parametric MRI. In: Proceedings of MICCAI-BraTS Conference, Canada

  22. Kass M (1988) Active Witkin models and demetri Terzopoulos: “Snakes: Active Contour Models”. Int J Comput Vis

  23. Kumar S, Mankame DP (2020) Optimization driven Deep Convolution Neural Network for brain tumor classification. Biocybern Biomed Eng 40(3):1190–1204

    Article  Google Scholar 

  24. Li C et al (2007) Implicit active contours driven by local binary fitting. in Proceedings of the energy [C], IEEE Conference on Computer Vision and Pattern Recognition

  25. Li C et al (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  MathSciNet  MATH  Google Scholar 

  26. Li C et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  MATH  Google Scholar 

  27. Li Q et al (2018) Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553

    Google Scholar 

  28. Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923

    Article  Google Scholar 

  29. Lok KH et al (2017) Fast and robust brain tumor segmentation using level set method with multiple image information. J X-Ray Sci Technol 25(2):301–312

    Article  MathSciNet  Google Scholar 

  30. Lopez MM, Ventura J (2017) Dilated convolutions for brain tumor segmentation in MRI scans. In: International MICCAI Brainlesion Workshop. Springer, Berlin

  31. Lorenzo PR et al (2019) Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Comput Methods Programs Biomed 176:135–148

    Article  Google Scholar 

  32. Ma D et al (2019) Adaptive local-fitting-based active contour model for medical image segmentation. Sig Process Image Commun 76:201–213

    Article  Google Scholar 

  33. Maharjan S et al (2020) A novel enhanced softmax loss function for brain tumour detection using deep learning. J Neurosci Methods 330:108520

    Article  Google Scholar 

  34. Mahata N, Sing JK (2020) A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3D brain MR image segmentation. Appl Soft Comput 90:106171

    Article  Google Scholar 

  35. Meng X et al (2017) Brain MR image segmentation based on an improved active contour model. PLoS ONE 12(8):e0183943

    Article  Google Scholar 

  36. Menze BH et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  37. Mittal M et al (2019) Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 78:346–354

    Article  Google Scholar 

  38. Naser MA, Deen MJ (2020) Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med 121:103758

  39. Özyurt F et al (2019) Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement 147:106830

    Article  Google Scholar 

  40. Raja PS (2020) Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern Biomed Eng 40(1):440–453

    Article  Google Scholar 

  41. Rehman ZU et al (2019) Fully automated multi-parametric brain tumour segmentation using superpixel based classification. Expert Syst Appl 118:598–613

    Article  Google Scholar 

  42. Saba T et al (2020) Brain tumor detection using fusion of hand crafted and deep learning features. Cogn Syst Res 59:221–230

    Article  Google Scholar 

  43. Saha BN et al (2012) Quick detection of brain tumors and edemas: A bounding box method using symmetry. Comput Med Imaging Graph 36(2):95–107

    Article  Google Scholar 

  44. Salah MB, Mitiche A, Ayed IB (2009) Effective level set image segmentation with a kernel induced data term. IEEE Trans Image Process 19(1):220–232

    Article  MathSciNet  MATH  Google Scholar 

  45. Saouli R, Akil M, Kachouri R (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 166:39–49

    Article  Google Scholar 

  46. Shahvaran Z et al (2012) Region-based active contour model based on Markov random field to segment images with intensity non-uniformity and noise. J Med signals Sens 2(1):17

    Article  Google Scholar 

  47. Shahvaran Z, Kazemi K, Helfroush MS (2016) Simultaneous vector-valued image segmentation and intensity nonuniformity correction using variational level set combined with Markov random field modeling. SIViP 10(5):887–893

    Article  Google Scholar 

  48. ŞİŞİK F, Eser S (2020) Brain tumor segmentation approach based on the extreme learning machine and significantly fast and robust fuzzy C-means clustering algorithms running on Raspberry Pi hardware. Med Hypotheses 136:109507

    Article  Google Scholar 

  49. Soltaninejad M et al (2018) Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Programs Biomed 157:69–84

    Article  Google Scholar 

  50. Soltaninejad M et al (2019) MRI brain tumor segmentation using random forests and fully convolutional networks. arXiv preprint arXiv:1909.06337

  51. Song Y et al (2017) A novel brain tumor segmentation from multi-modality MRI via a level-set-based model. J Signal Process Syst 87(2):249–257

    Article  Google Scholar 

  52. Zhao X et al (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asieh Khosravanian or Mohammad Rahmanimanesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravanian, A., Rahmanimanesh, M., Keshavarzi, P. et al. Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimed Tools Appl 81, 21719–21740 (2022). https://doi.org/10.1007/s11042-022-12445-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12445-7

Keywords

Navigation