Skip to main content
Log in

Tensor block-wise singular value decomposition for 3D point cloud compression

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel and efficient block-wise decomposition-based codec (BDC) for a three-dimensional (3D) light detection and ranging (LiDAR) point cloud (PCD) image (BDCPCD) has been introduced in this paper. The raw LiDAR data is cleansed and normalized by applying the axis outlier detection and circular differential cosine transformation methods, respectively. Then, the iterative dimensionality reduction approach is used to decompose and quantize the tensor structured signal data through block-wise singular value decomposition and signal block vectorization methods, respectively. The final single order tensor is considered as a compressed bitstream for efficient transformation. The proposed BDCPCD is applied on three different dense 3D LiDAR PCD data sets. The results demonstrate that it outperformed the four existing well-known compression techniques, such as WinRAR, 7-Zip, Tensor Tucker decomposition, and Random sample consensus (RANSAC) point cloud compression algorithm. This iterative compression algorithm constantly reduces the 66.66% of tensor blocks in each iteration. This research proves that the BDCPCD compresses different sizes of 3D LiDAR PCD spatial data to be reduced into six bytes and averagely increases the quality of the decompressed image by 1.6 decibels than the existing Tucker based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chithra PL, Tamilmathi C (2020) 3D LiDAR point cloud image codec based on tensor. Imaging Sci J 68(1):1–10. https://doi.org/10.1080/13682199.2020.1719747

    Article  Google Scholar 

  2. Chithra PL, Tamilmathi AC (2018) 3D color point cloud compression with plane fitting and discrete wavelet transform, IEEE - Tenth International Conference on Advanced Computing (ICoAC), pp 20–26. https://ieeexplore.ieee.org/document/8939106

  3. Chithra PL, Tamilmathi AC (2020) Tensor tucker decomposition based geometry compression on three dimensional LiDAR point cloud image. IJITEE 9(3):1897–1903. https://doi.org/10.35940/ijitee.C8551.019320

    Article  Google Scholar 

  4. Eftekharia A., Yapb H.L., Rozellb C.J., Wakina M. B.:The restricted isometry property for random block diagonal matrices, Applied and Computational Harmonic Analysis. 38(1), 1–31(2015).[https://doi.org/10.1016/j.acha.2014.02.001]

  5. Guo J., Xie R., Jin G. (2019). An Efficient Method for NMR Data Compression Based on Fast Singular Value Decomposition, IEEE Geoscience and Remote Sensing Letters, 16(2) 301–305 https://ieeexplore.ieee.org/document/8491389

  6. ISPRS Point Cloud test sites (accessed on February 2020) https://www.itc.nl/isprs/wgIII-3/filtertest/downloadsites/

  7. Jeyakumar S, Sudha S (2019) Hybrid hyperspectral image compression technique for non-iterative factorized tensor decomposition and principal component analysis: application for NASA’s AVIRIS data. Comput Geosci 23:969–979. https://doi.org/10.1007/s10596-019-09855-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Koep N., Behboodi A., Mathar R.: The Restricted Isometry Property of Block Diagonal Matrices for Group-Sparse Signal Recovery, arXive: 1901. 06214v1 (2019). https://www.researchgate.net/publication/330511723_

  9. Krivokuća M., Chou P.A., Koroteev M.: A Volumetric Approach to Point Cloud Compression–Part II: Geometry Compression, IEEE Transactions on Image Processing, 29: 2217–2229(2020). https://ieeexplore.ieee.org/document/8931233

  10. Li J, Liu J (2019) Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition. Open Physics 15:992–996. https://doi.org/10.1515/phys-2017-0123

    Article  Google Scholar 

  11. Lidar Concepts (accessed in February 2020) https://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-LiDAR-data-.htm

  12. LiDAR Point Cloud data set (accessed on September 2019) www.smartmm.com/downloads.html

  13. Marani R., RenoV.,Nitti M., D’Orazio T.,Stella E.: A Modified Iterative Closest Point Algorithm for 3D Matrices for Group-Sparse Signal Recovery. (2016). https://www.researchgate.net/publication/330511723_

  14. Mekuria R, Li Z, Tulvan C, Chou P (2016) Evaluation criteria for PCC.  https://mpeg.chiariglione.org/standards/mpeg-i/point-cloud-compression/evaluation-criteria-pcc

  15. Morell V, Orts S, Cazorla M, García-Rodríguez J (2014) Geometric 3D point cloud compression. Pattern Recognit Lett 50:55–62

    Article  Google Scholar 

  16. Ning X, Li F, Tlan G, Wang Y (2018) AN efficient Outlier removal method for scattered point cloud data. PLoS One 13(8):1–22. https://doi.org/10.1371/journal.pone.0201280

    Article  Google Scholar 

  17. Pavlov I, download. https://7-zip.org/download.html. [cited August 2018]. Repository: Sourceforge.net

  18. Phan A, Cichocki A, Tichavský P (2014) On Fast algorithms for orthogonal Tucker decomposition. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 6766–6770. https://doi.org/10.1109/ICASSP.2014.6854910

  19. Ripoll B Rafael, Pajarola R (2016) Lossy volume compression using Tucker truncation and thresholding. Vis Comput 32(11):1433–1446. https://doi.org/10.1007/s00371-015-1130-y

    Article  Google Scholar 

  20. Roshal E, download. https://rarlab.com/download.html. [cited August 2018]

  21. Schwarz S. Preda M, Barnocini V, Budagavi M, Cesar P, Chou PA, Cohen RA, Krivokuc A M, Nakagami O, Siahaam E, Tabatabai A, Tourapis AM, Zakharchenko V (2019) Emerging MPEG standards for point cloud compression, IEEE J Emerg Sel Topics Circuits Syst 9(1):133–148. https://ieeexplore.ieee.org/document/8571288

  22. Shou Z, Li M, Li S (2017) Outlier detection based on multi-dimensional clustering and local density. Journal of Central South University 24:1299–1306. https://doi.org/10.1007/s11771-017-3535-4

    Article  Google Scholar 

  23. Swathi HR, Sohini S, Surbhi, Gopichand G (2017) Image compression using singular value decomposition. IOP Conference Series: Materials Science and Engineering. 263(4):1–8. https://iopscience.iop.org/article/10.1088/1757-899X/263/4/042082

  24. Swiz surface data set (accessed on September 2019) https://en.wikipedia.org/wiki/National_LiDAR_dataset

  25. Sydney Urban 3D objects LiDAR data set (accessed on November 2020) http://www-personal.acfr.usyd.edu.au/a.quadros/objects4.html

  26. Tian D, Ochimizu H, Feng C, Cohen R, Vetro A (2017) Geometric distortion metrics for point cloud compression, IEEE International Conference on Image Processing (ICIP), Beijing, pp 3460–3464. https://ieeexplore.ieee.org/document/8296925

  27. Wan Y, Zhu L (2017) Research and implementation of SVD in machine learning, IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), pp 471–475. https://ieeexplore.ieee.org/document/7960038/definitions

  28. Wang Q, Wei M, Chen X, Miao Z (2018) Joint encryption and compression of 3D images based on tensor compressive sensing with non-autonomous 3D chaotic system. Multimed Tools Appl 77:1715–1734. https://doi.org/10.1007/s11042-017-4349-y

    Article  Google Scholar 

  29. Xu X, Liu H, Li L, Yao M (2018) Comparison of outlier detection techniques for high-dimensional data. Int J Comput Intell Syst 11(1):652–662. https://doi.org/10.2991/ijcis.11.1.50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Chithra.

Ethics declarations

Conflict of Interest

 There is no conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilmathi, A.C., Chithra, P.L. Tensor block-wise singular value decomposition for 3D point cloud compression. Multimed Tools Appl 81, 37917–37938 (2022). https://doi.org/10.1007/s11042-021-11738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11738-7

Keywords

Navigation