Skip to main content
Log in

Image segmentation by phase-field models with local information

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We proposed an improved phase-field model with local information for image segmentation. In our approach, a new double well potential function containing local contributions is taken into account. The advantages of the new scheme are in two folders. Firstly, the affection of noise could be reduced in image segmentation with intensity inhomogeneity. Secondly, a more stable boundary evolution could be achieved compared with the traditional way. Segmentation results for several different types of images are reported. We compare the segmentation results with the classical model for two-dimensional images. In the segmentation of three-dimensional magnetic resonance brain images, the accuracy comparisons are presented by the Dice and Jaccard similarity coefficients. Compared with the classical model, our model has higher segmentation accuracy and better stability of boundary evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6):1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2

    Article  Google Scholar 

  2. Alpert S, Galun M, Brandt A et al (2011) Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(2):315–327. https://doi.org/10.1109/TPAMI.2011.130

    Article  Google Scholar 

  3. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations 9:19–48. https://doi.org/10.1051/cocv:2002070

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. i. interfacial free energy. The Journal of Chemical Physics 28(2):258–267. https://doi.org/10.1063/1.1744102

    Article  MATH  Google Scholar 

  5. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. International Journal of Computer Vision 22(1):61–79

    Article  Google Scholar 

  6. Chan TF, Sandberg BY, Vese LA (2000) Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation 11(2):130–141. https://doi.org/10.1006/jvci.1999.0442

    Article  Google Scholar 

  7. Deepa V, Benson C, Lajish V (2015) Gray matter and white matter segmentation from mri brain images using clustering methods. International Research Journal of Engineering and Technology (IRJET) 2(8):913–921

    Google Scholar 

  8. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302. https://doi.org/10.2307/1932409

    Article  Google Scholar 

  9. Esedog S, Tsai YHR et al (2006) Threshold dynamics for the piecewise constant mumford-shah functional. Journal of Computational Physics 211(1):367–384. https://doi.org/10.1016/j.jcp.2005.05.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcke H, Hecht C, Hinze M et al (2015) Numerical approximation of phase field based shape and topology optimization for fluids. SIAM Journal on Scientific Computing 37(4):A1846–A1871. https://doi.org/10.1137/140969269

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou Z (2006) A review on mr image intensity inhomogeneity correction. International Journal of Biomedical Imaging 2006

  12. Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New Phytologist 11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  13. Jung YM, Kang SH, Shen J (2007) Multiphase image segmentation via modica-mortola phase transition. SIAM Journal on Applied Mathematics 67(5):1213–1232. https://doi.org/10.1137/060662708

    Article  MathSciNet  MATH  Google Scholar 

  14. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. International Journal of Computer Vision 1(4):321–331

    Article  Google Scholar 

  15. Kay DA, Tomasi A (2009) Color image segmentation by the vector-valued allen-cahn phase-field model: a multigrid solution. IEEE Transactions on Image Processing 18(10):2330–2339. https://doi.org/10.1109/TIP.2009.2026678

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostopoulos S, Glotsos D, Kagadis GC, et al (2007) A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on cta. Computers & Graphics 31(3):493–500. https://doi.org/10.1016/j.cag.2007.01.020

  17. Li C, Kao CY, Gore JC, et al (2007) Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 1–7. https://doi.org/10.1109/CVPR.2007.383014

  18. Li Y, Kim J (2011) Multiphase image segmentation using a phase-field model. Computers & Mathematics with Applications 62(2):737–745. https://doi.org/10.1016/j.camwa.2011.05.054

  19. Mumford DB, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics

  20. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of computational physics 79(1):12–49. https://doi.org/10.1016/0021-9991(88)90002-2

  21. Ronfard R (1994) Region-based strategies for active contour models. International Journal of Computer Vision 13(2):229–251

    Article  Google Scholar 

  22. Takezawa A, Kitamura M (2014) Phase field method to optimize dielectric devices for electromagnetic wave propagation. Journal of Computational Physics 257:216–240. https://doi.org/10.1016/j.jcp.2013.09.051

    Article  MathSciNet  MATH  Google Scholar 

  23. Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. Journal of Computational Physics 229(7):2697–2718. https://doi.org/10.1016/j.jcp.2009.12.017

    Article  MathSciNet  MATH  Google Scholar 

  24. Thai DH, Mentch L (2018) Multiphase segmentation for simultaneously homogeneous and textural images. Applied Mathematics and Computation 335:146–181. https://doi.org/10.1016/j.amc.2018.04.023

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsai A, Yezzi A, Willsky AS (2001) Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE transactions on Image Processing 10(8):1169–1186. https://doi.org/10.1109/83.935033

    Article  MATH  Google Scholar 

  26. Vasilevskiy A, Siddiqi K (2002) Flux maximizing geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12):1565–1578. https://doi.org/10.1109/TPAMI.2002.1114849

    Article  MATH  Google Scholar 

  27. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50(3):271–293

    Article  Google Scholar 

  28. Wang XF, Huang DS, Xu H (2010) An efficient local chan-vese model for image segmentation. Pattern Recognition 43(3):603–618. https://doi.org/10.1016/j.patcog.2009.08.002

    Article  MATH  Google Scholar 

  29. Wang XF, Min H, Zou L et al (2015) A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement. Pattern Recognition 48(1):189–204. https://doi.org/10.1016/j.patcog.2014.07.008

    Article  Google Scholar 

  30. Zhao S, Zhou M, Jia T et al (2014) Multi-branched cerebrovascular segmentation based on phase-field and likelihood model. Computers & graphics 38:239–247. https://doi.org/10.1016/j.cag.2013.11.004

    Article  Google Scholar 

  31. Zosso D, An J, Stevick J et al (2017) Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging 11(3):577–600. https://doi.org/10.3934/ipi.2017027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang Hu.

Ethics declarations

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, S. & Hu, X. Image segmentation by phase-field models with local information. Multimed Tools Appl 81, 3039–3057 (2022). https://doi.org/10.1007/s11042-021-11718-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11718-x

Keywords

Navigation