Skip to main content
Log in

Ultrasound image segmentation using an active contour model and learning-structured inference

  • 1176: Artificial Intelligence and Deep Learning for Biomedical Applications
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Automated segmentation of medical ultrasound (US) images is a challenging problem due to the complicated features of lesions, inconsistent lesions across individuals, and the high segmentation accuracy requirement. From recently published papers in this area, the active contour model (ACM) and machine learning method produce more accurate lesion segmentation results than previous methods. This paper proposes a novel image segmentation approach that integrates an ACM with a generalized linear model (GLM) and forms learning-structured inference. Compared with the GLM, the proposed method can solve the problems of initialization and the local minimum of the ACM. Furthermore, rather than using the ACM as a postprocessing tool, we integrate it into the training phase to fine-tune the GLM. This step allows the use of unlabeled data during training in a semisupervised setting. The integrated model requires only one image as the training set and is not as sensitive to labeled data as other methods. The proposed method is verified using US images, and the results show that the proposed method can produce accurate segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdelsamea MM, Gnecco G, Gaber MM (2017) A SOM-based Chan-Vese model for unsupervised image segmentation. Soft Comput 21(8):2047–2067

    Article  Google Scholar 

  2. Cardinale IF (2013) Sbalzarini, coupling image restoration and segmentation: a generalized linear model/bregman perspective. Int J Comput Vis 140(1):69–93

    MathSciNet  MATH  Google Scholar 

  3. Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 35(11):2592–2607

    Article  Google Scholar 

  4. Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982

    Article  MathSciNet  Google Scholar 

  5. Caselles KR, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  6. Chan VLA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  Google Scholar 

  7. Cunningham RJ, Harding PJ, Loram ID (2017) Real-time ultrasound segmentation, analysis and visualisation of deep cervical muscle structure. IEEE Trans Med Imaging 36(2):653–665

    Article  Google Scholar 

  8. Fang L, Qiu T, Yin L et al (2018) Active contour model driven by global and local intensity information for ultrasound image segmentation. Comput Math Appl 75(12):4286–4299

    Article  MathSciNet  Google Scholar 

  9. Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Article  Google Scholar 

  10. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  Google Scholar 

  11. Gert W, Alexander S, Alois H et al (2010) Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis. Ultrason Imaging 32(3):143–153

    Article  Google Scholar 

  12. Gupta D, Anand RS (2017) A hybrid edge-based segmentation approach for ultrasound medical images. Biomed Signal Process Control 31:116–126

    Article  Google Scholar 

  13. Hafifiane A, Vieyres P, Delbos A (2014) Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia. Comput Biol Med 52:88–95

    Article  Google Scholar 

  14. Ilunga-Mbuyamba E, Cruz-Duarte JM, Avina-Cervantes JG, Correa-Cely CR, Lindner D, Chalopin C (2016) Active contours driven by cuckoo search strategy for brain tumour images segmentation. Expert Syst Appl 56:59–68

    Article  Google Scholar 

  15. Jeong D, Kim S, Lee C, Kim J (2020) An accurate and practical explicit hybrid method for the Chan-Vese image segmentation model. Mathematics. 8(7):1173–1187

    Article  Google Scholar 

  16. Kass WA, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  17. Lai CC, Chang CY (2009) A hierarchical evolutionary algorithm for automatic medical image segmentation. Expert Syst Appl 36:248–259

    Article  Google Scholar 

  18. Li KCY, Gore JC et al (2007) Implicit active contours driven by local binary fitting energy. IEEE Conf on Comp Vis and Pattern Recognit:1–7

  19. Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17:1940–1949

    Article  MathSciNet  Google Scholar 

  20. Ma C, Luo G, Wang K (2018) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans Med Imaging 37(8):1943–1954

    Article  Google Scholar 

  21. Meiburger KM, Acharya UR, Molinari F (2018) Automated localization and segmentation techniques for B-mode ultrasound images: a review. Comput Biol Med 92:210–235

    Article  Google Scholar 

  22. Meng X, Wu S, Zhu J (2018) A unified bayesian inference framework for generalized linear models. IEEE Signal Process Lett 25(3):398–402

    Article  Google Scholar 

  23. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, Navab N (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102

    Article  Google Scholar 

  24. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25:987–1010

    Article  Google Scholar 

  25. Saha PK, Udupa JK (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 23:689–706

    Article  Google Scholar 

  26. Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T (2016) Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194:87–94

    Article  Google Scholar 

  27. Souleymane B, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Transactions on Cybernetics 43(3):910–920

  28. Torres HR, Queirós S, Morais P, Oliveira B, Fonseca JC, Vilaça JL (2018) Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review. Comput Methods Prog Biomed 157:49–67

    Article  Google Scholar 

  29. Udupa JK, Leblanc VR, Zhuge Y et al (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30:75–87

    Article  Google Scholar 

  30. Wang L, Pan C (2014) Robust level set image segmentation via a local correntropy-based K-means clustering. Pattern Recogn 47(5):1917–1925

    Article  Google Scholar 

  31. Wang L, Li C, Sun Q, Xia D, Kao CY (2009) Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput Med Imaging Graph 33:520–531

    Article  Google Scholar 

  32. Xu Y, Wang Y, Yuan J, Cheng Q, Wang X, Carson PL (2019) Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91:1–9

    Article  Google Scholar 

  33. Yuan J (2012) Active contour driven by region-scalable fitting and local Bhattacharyya distance energies for ultrasound image segmentation. IET Image Process 6:1075–1083

    Article  MathSciNet  Google Scholar 

  34. Zhou Z, Wu W, Wu S, Tsui PH, Lin CC, Zhang L, Wang T (2014) Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrason Imaging 36(4):256–276

    Article  Google Scholar 

  35. Zhuang Z, Lei N, Raj ANJ et al (2018) Application of fractal theory and fuzzy enhancement in ultrasound image segmentation. Med Biol Eng Comput 2:1–10

    Google Scholar 

  36. Zong JJ, Qiu TS, Li WD, Guo DM (2019) Automatic ultrasound image segmentation based on local entropy and active contour model. Comput Math Appl 78(3):929–943

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 61801202], Provincial College Students Innovation and Entrepreneurship Training Program, and the Undergraduate Scientific Research Training Projects Guided by Teachers [grant number CX201902022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

Author Lingling Fang declares that she has no conflicts of interest. Author Lirong Zhang declares that she has no conflicts of interest. Author Yibo Yao declares that he has no conflicts of interest. Author Le Chen declares that she has no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Symbol Definitions

The parameters used in the proposed method are as follows:

$$ \mathrm{area}\ \mathrm{in}\kern0.5em {\Omega}_1:{A}_o={\int}_{\Omega}H\left(\phi (x)\right) dx $$
(13)
$$ \mathrm{area}\ \mathrm{in}\kern0.5em {\Omega}_2:{A}_b={\int}_{\Omega}\left[1-H\left(\phi (x)\right)\right] dx $$
(14)
$$ \mathrm{area}\ \mathrm{in}\kern0.75em \Omega :\mathrm{A}={\int}_{\Omega} dx $$
(15)
$$ \mathrm{sum}\ \mathrm{of}\ \mathrm{the}\ \mathrm{in}\mathrm{tensity}\ \mathrm{in}\kern0.5em {\Omega}_1:{S}_o={\int}_{\Omega}I(x)H\left(\phi (x)\right) dx $$
(16)
$$ \mathrm{sum}\ \mathrm{of}\ \mathrm{the}\ \mathrm{in}\mathrm{tensity}\ \mathrm{in}\kern0.5em {\Omega}_2:{S}_b={\int}_{\Omega}I(x)\left[1-H\left(\phi (x)\right)\right] dx $$
(17)
$$ {\Omega}_1:{c}_o={S}_o/{A}_o={\int}_{\Omega}I(x)H\left(\phi (x)\right) dx/{\int}_{\Omega}H\left(\phi (x)\right) dx $$
(18)
$$ \mathrm{average}\ \mathrm{in}\mathrm{tensity}\ \mathrm{in}\kern0.5em {\Omega}_2:{c}_b={S}_b/{A}_b={\int}_{\Omega}I(x)\left[1-H\left(\phi (x)\right)\right] dx/{\int}_{\Omega}\left[1-H\left(\phi (x)\right)\right] dx $$
(19)

Appendix 2

1.1 Minimum of the proposed energy functional (11)

According to the gradient descent method, we can obtain the following:

$$ \partial \phi /\partial t=-\partial E\left(\phi, \wp \right)/\partial \phi =2{\wp}_o{\wp}_b\left({c}_o-{c}_b\right)\left({\partial c}_o/\partial \phi -{\partial c}_b/\partial \phi \right) $$
(20)

where

$$ {\partial c}_o/\partial \phi =\left({S}_o^{\prime }{A}_o-{S}_o{A}_o^{\prime}\right)/{A}_o^2=\left({S}_o^{\prime }-{c}_o{A}_o^{\prime}\right)/{A}_o=\delta \cdotp \left(\left(I-{c}_o\right)/{A}_o\right) $$
(21)
$$ {\partial c}_b/\partial \phi =\left({S}_b^{\prime }{A}_b-{S}_b{A}_b^{\prime}\right)/{A}_b^2=-\left({S}_b^{\prime }-{c}_b{A}_b^{\prime}\right)/{A}_b=-\delta \cdotp \left(\left(I-{c}_b\right)/{A}_b\right) $$
(22)

The corresponding derivative is:

$$ {\displaystyle \begin{array}{l}\partial \phi /\partial t=-\partial E\left(\phi, \wp \right)/\partial \phi =2{\wp}_o{\wp}_b\left({c}_o-{c}_b\right)\left({\partial c}_o/\partial \phi -{\partial c}_b/\partial \phi \right)\\ {}=2{\wp}_o{\wp}_b\left({c}_o-{c}_b\right)\left(\delta \left(\left(I-{c}_o\right)/{A}_o\right)+\delta \left(\left(I-{c}_b\right)/{A}_b\right)\right)=2\delta {\wp}_o{\wp}_b\left({c}_o-{c}_b\right)\left(\left(I-{c}_o\right)/{A}_o+\left(I-{c}_b\right)/{A}_b\right)\end{array}} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Zhang, L., Yao, Y. et al. Ultrasound image segmentation using an active contour model and learning-structured inference. Multimed Tools Appl 81, 13389–13407 (2022). https://doi.org/10.1007/s11042-021-11088-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11088-4

Keywords

Navigation