Skip to main content
Log in

The MSK: a simple and robust image encryption method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This article proposes a new image encryption approach based on bitplane decomposition methods and chaotic maps. This approach does not depend on any additional images to initiate the encryption process. The encryption method involves a chaotic logistic map to create the initial security bitplanes. The proposed approach is flexible enough to choose any one of the available bitplane decomposition methods. Moreover, some different scrambling algorithms can be used that can efficiently scramble the bitplanes, instead of using the proposed scrambling algorithm. The proposed method can be implemented very easily and does not involve highly complex operations that makes the algorithm suitable for real time applications. The proposed method is simulated, tested, compared with some standard image encryption approaches and analyzed with the help of some standard cipher image evaluation parameters. Both visual and quantitative analysis of the obtained results are presented in detail. The results of the experiments are very promising and shows effective encryption performance on various types of images, that makes the proposed algorithm suitable for the real-life applications. The experimental results also demonstrate the strength of the proposed algorithm against different types of the cryptographic attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agaian S, Astola J, Egiazarian K, Kuosmanen P (1995) Decompositional methods for stack filtering using Fibonacci p-codes. Signal Process 41:101–110. https://doi.org/10.1016/0165-1684(94)00093-F

    Article  Google Scholar 

  2. Ahmed HEH (2006) Encryption quality analysis of the RC5 block cipher algorithm for digital images. Opt Eng 45:107003. https://doi.org/10.1117/1.2358991

    Article  Google Scholar 

  3. Auli-Llinas F, Marcellin MW (2012) Scanning order strategies for Bitplane image coding. IEEE Trans Image Process 21:1920–1933. https://doi.org/10.1109/TIP.2011.2176953

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao L, Zhou Y (2015) Image encryption: generating visually meaningful encrypted images. Inf Sci (NY) 324:197–207. https://doi.org/10.1016/J.INS.2015.06.049

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty S, Seal A, Roy M, Mali K (2016) A novel lossless image encryption method using DNA substitution and chaotic logistic map. Int J Secur Appl 10:205–216. https://doi.org/10.14257/ijsia.2016.10.2.19

    Article  Google Scholar 

  6. Chakraborty S, Seal A, Roy M, Mali K (2016) A novel lossless image encryption method using DNA substitution and chaotic logistic map. Int J Secur Appl 10. https://doi.org/10.14257/ijsia.2016.10.2.19

  7. Cheng H (2000) Partial encryption of compressed images and videos. IEEE Trans Signal Process 48:2439–2451. https://doi.org/10.1109/78.852023

    Article  Google Scholar 

  8. Standard DE (1999) Data encryption standard. Federal Information Processing Standards Publication, 112

  9. Coppersmith D (1994) Data encryption standard (DES) and its strength against attacks. IBM J Res Dev 38:243–250. https://doi.org/10.1147/rd.383.0243

    Article  MATH  Google Scholar 

  10. Cui G, Qin L, Wang Y, Zhang X (2008) An encryption scheme using DNA technology. In: 2008 3rd international conference on bio-inspired computing: theories and applications. IEEE, pp 37–42

  11. CVG - UGR - Image database. http://decsai.ugr.es/cvg/dbimagenes/g512.php. Accessed 15 Aug 2019

  12. Daemen J, Rijmen V (2020) The Design of Rijndael. Springer, Berlin

    Book  Google Scholar 

  13. Daemen J, Rijmen V (1999) The Rijndael block cipher: AES proposal. In: First candidate conference (AeS1), pp 343-348

  14. De Silva DVSX, Fernando WAC, Kodikaraarachchi H et al (2010) Adaptive sharpening of depth maps for 3D-TV. Electron Lett 46:1546. https://doi.org/10.1049/el.2010.2320

    Article  Google Scholar 

  15. Gehani A, LaBean T, Reif J (2003) DNA-based cryptography. Springer, Berlin, pp 167–188

    MATH  Google Scholar 

  16. Gehani A, LaBean TH, Reif JH (n.d.) DNA-based cryptography. DIMACS series in discrete mathematics. Theor Comput Sci 54:233–249

  17. Gevorkian DZ, Egiazarian KO, Agaian SS, Astola JT, Vainio O (1995) Parallel algorithms and VLSI architectures for stack filtering using Fibonacci p-codes. IEEE Trans Signal Process 43:286–295. https://doi.org/10.1109/78.365308

    Article  Google Scholar 

  18. Gonzalez RC, Woods RE (2008) Digital image processing: Pearson prentice hall. Upper Saddle River, NJ, 1, pp 376–376

  19. Grangetto M, Magli E, Olmo G (2006) Multimedia selective encryption by means of randomized arithmetic coding. IEEE Trans Multimed 8:905–917. https://doi.org/10.1109/TMM.2006.879919

    Article  Google Scholar 

  20. Han J-W, Park C-S, Ryu D-H, Kim E-S (1999) Optical image encryption based on XOR operations. Opt Eng 38:47. https://doi.org/10.1117/1.602060

    Article  Google Scholar 

  21. Hu J, Han F (2009) A pixel-based scrambling scheme for digital medical images protection. J Netw Comput Appl 32:788–794. https://doi.org/10.1016/J.JNCA.2009.02.009

    Article  Google Scholar 

  22. Hua Z, Zhou Y, Pun C-M, Chen CLP (2015) 2D sine logistic modulation map for image encryption. Inf Sci (NY) 297:80–94. https://doi.org/10.1016/J.INS.2014.11.018

    Article  Google Scholar 

  23. Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci (Ny) 480:403–419. https://doi.org/10.1016/J.INS.2018.12.048

    Article  Google Scholar 

  24. Jolfaei A, Mirghadri A (2010) A new approach to measure quality of image encryption. Int J Comput Netw Secur 2(8):38–44

  25. Kamali SH, Hedayati M, Shakerian R, Rahmani M (2010) A new modified version of advanced encryption standard based algorithm for image encryption. In: ICEIE 2010–2010 International Conference on Electronics and Information Engineering, Proceedings

  26. Ko S-J, Lee S-H, Jeon S-W, Kang E-S (1999) Fast digital image stabilizer based on gray-coded bit-plane matching. IEEE Trans Consum Electron 45:598–603. https://doi.org/10.1109/30.793546

    Article  Google Scholar 

  27. Leong MP, Cheung OYH, Tsoi KH, Leong PHW (n.d.) A bit-serial implementation of the international data encryption algorithm IDEA. In: Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00871). IEEE Comput. Soc, pp 122–131

  28. Li S, Chen G, Zheng X (2006) Chaos-based encryption for digital images and videos. Multimedia Encryption and Authentication Techniques and Applications, 129

  29. Luo RC, Chung LY, Lien CH (2002) A novel symmetric cryptography based on the hybrid haar wavelets encoder and chaotic masking scheme. IEEE Trans Ind Electron 49:933–944. https://doi.org/10.1109/TIE.2002.801252

    Article  Google Scholar 

  30. Moon D, Chung Y, Pan SB, Moon K, Chung K (2006) An efficient selective encryption of fingerprint images for embedded processors. ETRI J 28:444–452. https://doi.org/10.4218/etrij.06.0106.0013

    Article  Google Scholar 

  31. Mozaffari S (2018) Parallel image encryption with bitplane decomposition and genetic algorithm. Multimed Tools Appl 77:25799–25819. https://doi.org/10.1007/s11042-018-5817-8

    Article  Google Scholar 

  32. Pareek N, Patidar V, Sud K (2003) Discrete chaotic cryptography using external key. Phys Lett A 309:75–82. https://doi.org/10.1016/S0375-9601(03)00122-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Patidar V, Sud Kk, Pareek NK (2009) A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33(4):441–452

  34. Preishuber M, Hutter T, Katzenbeisser S, Uhl A (2018) Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans Inf Forensics Secur 13:2137–2150. https://doi.org/10.1109/TIFS.2018.2812080

    Article  Google Scholar 

  35. Qi M, Lu Y, Du N et al (2010) A novel image hiding approach based on correlation analysis for secure multimodal biometrics. J Netw Comput Appl 33:247–257. https://doi.org/10.1016/j.jnca.2009.12.004

    Article  Google Scholar 

  36. Roy M, Chakraborty S, Mali K (2020) A robust image encryption method using chaotic skew-tent map. In: Applications of advanced machine intelligence in computer vision and object recognition: emerging research and opportunities. IGI Global, pp 1–29

  37. Seal A, Chakraborty S, Mali K (2017) A new and resilient image encryption technique based on pixel manipulation, value transformation and visual transformation utilizing single–level haar wavelet transform

  38. Shujun L, Xuanqin M, Yuanlong C (2001) Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. Springer, Berlin, pp 316–329

    MATH  Google Scholar 

  39. Sun F, L?? Z, Liu S (2010) A new cryptosystem based on spatial chaotic system. Opt Commun 283:2066–2073. https://doi.org/10.1016/j.optcom.2010.01.028

  40. Sun Q, Yan W, Huang J, Ma W (2012) Image encryption based on bit-plane decomposition and random scrambling. In: 2012 2nd international conference on consumer electronics, Communications and Networks (CECNet). IEEE, pp. 2630–2633

  41. Wadi SM, Zainal N (2014) High definition image encryption algorithm based on AES modification. Wirel Pers Commun 79:811–829. https://doi.org/10.1007/s11277-014-1888-7

    Article  Google Scholar 

  42. Wang X, Zhang Q (2009) DNA computing-based cryptography. In: 2009 fourth international on conference on bio-inspired computing. IEEE, pp 1–3

  43. Wang X, Liu L, Zhang Y (2015) A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng 66:10–18. https://doi.org/10.1016/J.OPTLASENG.2014.08.005

    Article  Google Scholar 

  44. Wu Y, Zhou Y, Noonan JP, Agaian S (2014) Design of image cipher using latin squares. Inf Sci (NY) 264:317–339. https://doi.org/10.1016/J.INS.2013.11.027

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu X, Wang D, Kurths J, Kan H (2016) A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system. Inf Sci (NY) 349–350:137–153. https://doi.org/10.1016/J.INS.2016.02.041

    Article  Google Scholar 

  46. Xu M, Tian Z (2019) A novel image cipher based on 3D bit matrix and latin cubes. Inf Sci (NY) 478:1–14. https://doi.org/10.1016/J.INS.2018.11.010

    Article  Google Scholar 

  47. Ye R (2011) A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Opt Commun 284:5290–5298. https://doi.org/10.1016/j.optcom.2011.07.070

    Article  Google Scholar 

  48. Yu XY, Zhang J, Ren HE, Li S, Zhang XD (2006) A new measurement method of Iimage encryption. J Phys Conf Ser 48:408–411. https://doi.org/10.1088/1742-6596/48/1/077

    Article  Google Scholar 

  49. Yue T-W, Chiang S (2007) The semipublic encryption for visual cryptography using Q’tron neural networks. J Netw Comput Appl 30:24–41. https://doi.org/10.1016/J.JNCA.2005.08.003

    Article  Google Scholar 

  50. Zahmoul R, Ejbali R, Zaied M (2017) Image encryption based on new Beta chaotic maps. Opt Lasers Eng 96:39–49. https://doi.org/10.1016/J.OPTLASENG.2017.04.009

    Article  Google Scholar 

  51. Zhang Y (2018) The unified image encryption algorithm based on chaos and cubic S-box. Inf Sci (NY) 450:361–377. https://doi.org/10.1016/J.INS.2018.03.055

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang W, Yu H, Zhao Y, Zhu Z (2016) Image encryption based on three-dimensional bit matrix permutation. Signal Process 118:36–50. https://doi.org/10.1016/J.SIGPRO.2015.06.008

    Article  Google Scholar 

  53. Zhou Y, Panetta K, Agaian S, Chen CLP (2012) Image encryption using P-Fibonacci transform and decomposition. Opt Commun 285:594–608. https://doi.org/10.1016/J.OPTCOM.2011.11.044

    Article  Google Scholar 

  54. Zhou Y, Panetta K, Agaian S, Chen CLP (2013) (n, k, p)-gray code for image systems. IEEE Trans Cybern 43:515–529. https://doi.org/10.1109/TSMCB.2012.2210706

    Article  Google Scholar 

  55. Zhou Y, Cao W, Philip Chen CL (2014) Image encryption using binary bitplane. Signal Process 100:197–207. https://doi.org/10.1016/J.SIGPRO.2014.01.020

    Article  Google Scholar 

  56. Zhu Z, Zhang W, Wong K, Yu H (2011) A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf Sci (NY) 181:1171–1186. https://doi.org/10.1016/J.INS.2010.11.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouvik Chakraborty.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, M., Chakraborty, S. & Mali, K. The MSK: a simple and robust image encryption method. Multimed Tools Appl 80, 21261–21291 (2021). https://doi.org/10.1007/s11042-021-10761-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10761-y

Keywords

Navigation