Skip to main content
Log in

Mean distance local binary pattern: a novel technique for color and texture image retrieval for liver ultrasound images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A rapid growth in medical ultrasound database makes it difficult for medical practitioners to manage and search relevant data with good efficiency. Hence, a novel image retrieval technique using Mean Distance Local Binary Pattern (Mean Distance LBP) has been proposed for content-based image retrieval. The conventional local binary pattern (LBP) converts every pixel of image into a binary pattern based on their relationship with neighbourhood pixels. The proposed feature descriptor differs from local binary pattern as it transforms the mutual relationship of all neighbouring pixels in a binary pattern based on their standard deviation templates as well as Euclidean distance from the center pixel. Color feature and Gray Level Co-occurrence Matrix have also been used in this work. To prove the excellence of the proposed method, experiments have been conducted on two different databases of natural images and face images. Further, the method is applied on real time ultrasound database for retrieval of liver images from a set of ultrasound images of various organs. The performance has been observed using well-known evaluation measures, precision and recall, and compared with some state-of-art local patterns. Comparison shows a significant improvement in the proposed method over existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ahmadian A, Mostafa A (2003) An efficient texture classification algorithm using Gabor wavelet, in 25th annual international conference of engineering in medicine and biology society. Cancun, Mexico

    Google Scholar 

  2. Aigrain P, Zhang H, Petkovic D (1996) Content-based representation and retrieval of visual media: a state-of-the-art review. Multimed Tools Appl 3(3):179–202

    Article  Google Scholar 

  3. Ainhoa L, Manmatha R, Rüger S (2010) Image retrieval using markov random fields and global image features, in ACM International Conference on Image and Video Retrieval. USA, New York

    Google Scholar 

  4. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood intensity pattern–a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115

    Article  Google Scholar 

  5. Baochang Z, Gao Y, Zhao S, Liu J (2009) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  6. Bedi AK, Sunkaria RK (2020) Local tetra-directional pattern–a new texture descriptor for content-based image retrieval. Pattern Recognition and Image Analysis 30(4):578–593

    Article  Google Scholar 

  7. Bedi AK, Sunkaria RK, Randhawa SK (2018) Local binary pattem variants: a review, in In 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). Jalandhar, India

    Google Scholar 

  8. Beigi M, Benitez AB, Chang SF (1997) MetaSEEK: a content-based metasearch engine for images, in Storage and Retrieval for Image and Video Databases VI. SPIE, San Hose

    Google Scholar 

  9. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (Csur) 40(2):5:1–5:60

    Article  Google Scholar 

  10. Deng C, Yang E, Liu T, Li J, Liu W, Tao D (2019) Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans Image Process 28(8):4032–4044

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubey SR, Singh SK, Singh RK (2015) Local diagonal Extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Processing Letters 22(9):1215–1219

    Article  Google Scholar 

  12. Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans Image Process 24(12):5892–5903

    Article  MathSciNet  MATH  Google Scholar 

  13. Farsi H, Mohamadzadeh S (2013) Colour and texture feature-based image retrieval by using Hadamard matrix in discrete wavelet transform. IET Image Process 7(3):212–218

    Article  MathSciNet  Google Scholar 

  14. Gui J, Liu T, Sun Z, Tao D, Tan T (2017) Fast supervised discrete hashing. IEEE Trans Pattern Anal Mach Intell 40(2):490–496

    Article  Google Scholar 

  15. Hamouchene I, Aouat S (2014) A new texture analysis approach for iris recognition, in In AASRI Procedia

    Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Transactions on systems, man, and cybernetics SMC-3(6):610–621

    Article  Google Scholar 

  17. He Z, You X, Yuan Y (2009) Texture image retrieval based on non-tensor product wavelet filter banks. Signal Process 89(8):1501–1510

    Article  MATH  Google Scholar 

  18. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns, in In Computer vision, graphics and image processing. Springer, Berlin, Heidelberg

    Google Scholar 

  19. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, USA

    Google Scholar 

  20. Jain R, Kasturi R, Schunck BG (1995) Texture, in Machine vision. McGraw-Hill, New York, pp 234–248

    Google Scholar 

  21. Jhanwar N, Chaudhuri S, Seetharaman GS, Zavidovique B (2004) Content based image retrieval using motif cooccurrence matrix. Image Vis Comput 22(14):1211–1220

    Article  Google Scholar 

  22. Kato T (1992) Database architecture for content-based image retrieval, in Image storage and retrieval systems. SPIE, San Jose

    Google Scholar 

  23. Liao S, Law MW, Chung AC (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu F, Picard RW (1996) Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans Pattern Anal Mach Intell 18(7):722–733

    Article  Google Scholar 

  25. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282

    Article  MATH  Google Scholar 

  26. Liu W, Wang J, Ji R, Jiang Y-G, Chang S-F (2012) Supervised hashing with kernels," in In 2012 IEEE Conference on Computer Vision and Pattern Recognition

  27. Liu X, He J, Deng C, Lang B (2014) Collaborative hashing, in In Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  28. Manjunath BS, Ma WY (1999) Netra: a toolbox for navigating large image databases. Multimedia Systems 7(3):184–198

    Article  Google Scholar 

  29. Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Transactions on circuits and systems for video technology 11(6):703–715

    Article  Google Scholar 

  30. Müller H, Müller W, Squire DM, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposals. Pattern Recogn Lett 22(5):593–601

    Article  MATH  Google Scholar 

  31. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local Extrema patterns: a new descriptor for content based image retrieval. International journal of multimedia information retrieval 1(3):191–203

    Article  MATH  Google Scholar 

  32. Niblack CW, Barber R, Equitz W, Flickner MD, Glasman EH, Petkovic D, Yanker P, Faloutsos C, Taubin G (1993) QBIC project: querying images by content, using color, texture, and shape, in Storage and retrieval for image and video databases. SPIE, San Jose

    Google Scholar 

  33. Ojala T, Pieti M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Analysis and Machine Intelligence 24(7):971–987

    Article  Google Scholar 

  34. M. Partio, B. Cramariuc, M. Gabbouj and A. Visa (2002) Rock texture retrieval using gray level co-occurrence matrix, in In Proc. of 5th Nordic Signal Processing Symposium, Norway

  35. Pass G, Zabih R (1996) Hstogram refinement for content-based image retrieval, in Proceedings Third IEEE Workshop on Applications of Computer Vision. Sarasota, USA

    Google Scholar 

  36. Pass G, Zabih R (1999) Comparing images using joint histograms. Journal of Multimedia Systems 7(3):234–240

    Article  Google Scholar 

  37. Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors, in Proceedings of the fourth ACM international conference on Multimedia. USA, Boston

    Google Scholar 

  38. Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20

    Article  Google Scholar 

  39. Sciascio ED, Mongiello M (1998) DrawSearch: a tool for interactive content-based image retrieval over the internet, in Storage and Retrieval for Image and Video Databases VII. SPIE, San Jose

    Google Scholar 

  40. Y. Shi, X. You, F. Zheng, S. Wang and Q. Peng, Equally-guided discriminative hashing for cross-modal retrieval, in In International Joint Conference on Artificial Intelligence, 2019.

    Google Scholar 

  41. Smith JR, Chang SF (1997) Querying by color regions using the VisualSEEk content-based visual query system. Intelligent multimedia information retrieval 7(3):23–41

    Google Scholar 

  42. Subrahmanyam M, Wu QJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  43. Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  44. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  45. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Transactions on Systems, man, and cybernetics 8(6):460–473

    Article  Google Scholar 

  46. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  47. The AT&T database of faces: [Online]. Available: http://www.uk.research.att.com/facedatabase.html, 2002.

  48. The Corel-1K database: [Online]. Available: http://wang.ist.psu.edu/docs/related/.

  49. Vadivel A, Sural S, Majumdar AK (2007) An integrated color and intensity co-occurrence matrix. Pattern Recogn Lett 28(8):974–983

    Article  Google Scholar 

  50. Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Article  Google Scholar 

  51. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digital Signal Processing 51:62–72

    Article  MathSciNet  Google Scholar 

  52. Verma M, Raman B (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77(10):11843–11866

    Article  Google Scholar 

  53. Verma M, Raman B, Murala S (2015) Local Extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

    Article  Google Scholar 

  54. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Article  Google Scholar 

  55. Zhang J, Li G-l, He S-w (2008) Texture-based image retrieval by edge detection matching GLCM, in In 2008 10th IEEE International Conference on High Performance Computing and Communications. Dalian, China

    Google Scholar 

  56. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

  57. Zhao G, Ahonen T, Matas J, Pietikainen M (2011) Rotation-invariant image and video description with local binary pattern features. IEEE Trans Image Process 21(4):1465–1477

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao Y, Jia W, Hu R-X, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anterpreet Kaur Bedi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedi, A.K., Sunkaria, R.K. Mean distance local binary pattern: a novel technique for color and texture image retrieval for liver ultrasound images. Multimed Tools Appl 80, 20773–20802 (2021). https://doi.org/10.1007/s11042-021-10758-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10758-7

Keywords

Navigation