Skip to main content

Advertisement

Log in

Skin lesion segmentation using k-mean and optimized fire fly algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Digital image processing is turning out to be increasingly more significant in the health care field used to diagnose skin cancer. The death rate is increasing by 1% every year due to skin cancer. One of the major causes of casualties due to this cancer is the non-predictability at the early stages. This paper will help in future research work when it comes to early detection of a tumor. In this work, the proposed model comprises of two important steps which are preprocessing and segmentation. In a pre-processing case, unwanted artifacts like hair, illumination, or many other artifacts are reduced by an enhanced technique using threshold and morphological operations and In the second step, segmentation of skin lesion using k-mean segmentation algorithm with optimized firefly algorithm (FFA) technique is used to achieve high accuracy. Input sample images are taken from the International skin imaging collaboration (ISIC) archive dataset and dermatology service of Hospital Pedro Hispano (PH2) dataset which are available online. The results of the proposed method are measured in terms of different parameters. It provides an accuracy of 99.1% and 98.9% using ISIC and PH2 datasets and shows better performance than existing techniques such as K-Mean and K-Mean with Particle Swarm Optimization (PSO). The performance of this research work is, in fact, quite promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

References

  1. Abbas Q, Fondón I, Rashid M (2011) Unsupervised skin lesions border detection via two-dimensional image analysis. Comp Methods Prog Biomed 104(3). https://doi.org/10.1016/j.cmpb.2010.06.016

  2. Abbas Q, Celebi ME, García IF, Rashid M (2011) Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 17(1):91–100

    Article  Google Scholar 

  3. Abbas Q, Celebi M, García IF (2011) Hair removal methods: a comparative study for dermoscopy images. Biomed Signal Process Control 6(4):395–404. https://doi.org/10.1016/j.bspc.2011.01.003

    Article  Google Scholar 

  4. Ahn E, Kim J, Bi L, Kumar A, Li C, Fulham M, Feng DD (2017) Saliency-based lesion segmentation via background detection in Dermoscopic images. IEEE J Biomed Health Informat 21(6):1685–1693

    Article  Google Scholar 

  5. Bi L, Kim J, Ahn E, Feng D, Fulham M (2016) Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic. https://doi.org/10.1109/ISBI.2016.7493448

  6. Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D (2017) Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans Biomed Eng 64(9):2065–2074

    Article  Google Scholar 

  7. Bozorgtabar B, Sedai S, Roy PK, Garnavi R (2017) Skin lesion segmentation using deep convolution networks guided by local unsupervised learning. IBM J Res Dev 61(4/5). https://doi.org/10.1147/JRD.2017.2708283

  8. Celebi ME, Zornberg A (2014) Automated quantification of clinically significant colors in Dermoscopy images and its application to skin lesion classification. IEEE Syst J 8(3):980–984. https://doi.org/10.1109/JSYST.2014.2313671

    Article  Google Scholar 

  9. Celebi ME, Kingravi HA, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353

    Article  Google Scholar 

  10. Celebi M, Iyatomi H, Schaefer G, Stoecker WV (2009) Lesion border detection in dermoscopy images. Comput Med Imaging Graph 33(2):148–153

    Article  Google Scholar 

  11. Celebi ME, Wen Q, Hwang S, Iyatomi H, Schaefer G (2012) Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods. Skin Res Technol 19(1). https://doi.org/10.1111/j.1600-0846.2012.00636.x

  12. Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2016) Skin lesion analysis toward melanoma detection. In: International symposium on biomedical imaging (ISBI), Prague, Czech Republic

  13. Eltayef K, Li Y, Liu X (2017) Lesion Segmentation in Dermoscopy Images Using Particle Swarm Optimization and Markov Random Field. In: IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece. https://doi.org/10.1109/CBMS.2017.26

  14. Fan H, Xie F, Li Y, Jiang Z, Liu J (2017) Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Comput Biol Med 85:75–85

    Article  Google Scholar 

  15. Fleming MG, Steger CB, Zhang JR, Gao J, Cognetta A, Pollak L, Dyer C (1998) Techniques for a structural analysis of dermatoscopic imagery. Comput Med Imaging Graph 22(5):375–389

    Article  Google Scholar 

  16. RB Francisco, MFP Costa, Rocha AMAC (2014) Experiments with Firefly Algorithm. Computational Science and Its Applications – 14th International Conference on Computational Science and Its Applications (ICCSA ), Guimaraes, Russia. https://doi.org/10.1007/978-3-319-09129-7_17

  17. Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S (2011) Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph 35(2):105–115

    Article  Google Scholar 

  18. George Y, Aldeen M, Garnavi R (2015) Skin Hair Removal for 2D Psoriasis Images,” 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, SA. https://doi.org/10.1109/DICTA.2015.7371308

  19. Ghamisi P, Couceiro MS, Benediktsson JA, Ferreira NM (2012) An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst Appl 39(16):12407–12417

    Article  Google Scholar 

  20. Gomez DD, Butakoff C, Ersboll BK, Stoecker W (2007) Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng 55(1):157–161. https://doi.org/10.1109/TBME.2007.910651

    Article  Google Scholar 

  21. Grin CM (1990) Accuracy in the Clinical Diagnosis of Malignant Melanoma. Arch Dermatol 126(6):763

    Article  Google Scholar 

  22. Iyatomi H, Oka H, Saito M, Miyake A, Kimoto M, Yamagami J, Kobayashi S, Tanikawa A, Hagiwara M, Ogawa K, Argenziano G, Soyer HP, Tanaka M (2006) Quantitative assessment of tumour extraction from dermoscopy images and evaluation of computer-based extraction methods for an automatic melanoma diagnostic system. Melanoma Res 16(2):183–190

    Article  Google Scholar 

  23. Jafari M, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr S, Ward K, Najarian K, (2016) Skin lesion segmentation in clinical images using deep learning. In: 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico. https://doi.org/10.1109/ICPR.2016.7899656

  24. Jaisakthi SM, Mirunalini P, Aravindan C (2018) Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Comput Vis 12(8):1088–1095. https://doi.org/10.1049/iet-cvi.2018.5289

    Article  Google Scholar 

  25. Kechichian R, Gong H, Revenu M, Lezoray O, Desvignes M (2014) New data model for graph-cut segmentation: Application to automatic melanoma delineation. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, https://doi.org/10.1109/ICIP.2014.7025179

  26. Ma Z, Tavares JMRS (2015) A novel approach to segment skin lesions in Dermoscopic images based on a deformable model. IEEE J Biomed Health Informat 20(2):615–623

    Article  Google Scholar 

  27. Maglogiannis I, Delibasis K (2015) Hair removal on dermoscopy images. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy. https://doi.org/10.1109/EMBC.2015.7319013

  28. Morton, Mackie (1998) Clinical accuracy of the diagnosis of cutaneous malignant melanoma. Br J Dermatol 138(2):283–287

    Article  Google Scholar 

  29. Nayak J, Naik B, Behera HS (2017) Cluster analysis using firefly-based K-means algorithm: a combined approach. Adv Intell Syst Comput Comput Intell Data Mining:55–64. https://doi.org/10.1007/978-981-10-3874-7_6

  30. Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans Pattern Anal Mach Intell 26(11):1452–1458

    Article  Google Scholar 

  31. Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A (Sep. 2016) Skin lesion image segmentation using Delaunay triangulation for melanoma detection. Comput Med Imaging Graph 52:89–103

    Article  Google Scholar 

  32. Sadri AR, Zekri M, Sadri S, Gheissari N, Mokhtari M, Kolahdouzan F (2012) Segmentation of Dermoscopy images using wavelet networks. IEEE Trans Biomed Eng 60(4):1134–1141

    Article  Google Scholar 

  33. Silveira M, Nascimento JC, Marques JS, Marcal ARS, Mendonca T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in Dermoscopy images. IEEE J Select Topics Signal Process 3(1):35–45. https://doi.org/10.1109/JSTSP.2008.2011119

    Article  Google Scholar 

  34. Suer S, Kockara S, Mete M (2011) An improved border detection in dermoscopy images for density based clustering. In: Proceedings of the Eighth Annual MCBIOS Conf., Texas, US. https://doi.org/10.1186/1471-2105-12-S10-S12

  35. Toossi MTB, Pourreza HR, Zare H, Sigari M-H, Layegh P, Azimi A (Apr. 2013) An effective hair removal algorithm for dermoscopy images. Skin Res Technol 19(3):230–235

    Article  Google Scholar 

  36. Toossi MTB, Pourreza HR, Zare H, Sigari M-H, Layegh P, Azimi A (2013) An effective hair removal algorithm for dermoscopy images. Skin Res Technol 19(3):230–235

    Article  Google Scholar 

  37. Xie F, Bovik AC (2013) Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recogn 46(3):1012–1019. https://doi.org/10.1016/j.patcog.2012.08.012

    Article  Google Scholar 

  38. Yu L, Chen H, Dou Q, Qin J, Heng P-A (2016) Automated melanoma recognition in Dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004

    Article  Google Scholar 

  39. Yuksel M, Borlu M (2009) Accurate segmentation of Dermoscopic images by image Thresholding based on Type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982. https://doi.org/10.1109/TFUZZ.2009.2018300

    Article  Google Scholar 

  40. Zhou H, Schaefer G, Sadka AH, Celebi ME (2009) Anisotropic mean shift based fuzzy C-means segmentation of Dermoscopy images. IEEE J Select Topics Signal Process 3(1):26–34. https://doi.org/10.1109/JSTSP.2008.2010631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly Garg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Jindal, B. Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimed Tools Appl 80, 7397–7410 (2021). https://doi.org/10.1007/s11042-020-10064-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10064-8

Keywords

Navigation