Skip to main content
Log in

3D shape clustering with Nonnegative Least Squares coding and fusion on multilayer graphs

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The well-known method of spectral clustering for 3D shape datasets is revisited. The graph construction by NNLS (Nonnegative Least Squares) coding technique is at the core of our method. Using graph-based encoding techniques and well-known shape descriptors, a framework is presented here which is applied to 3D shape clustering. Provided a shape database, a graph is first constructed. Weights in the graph are calculated so as to approximate each shape as a sparse linear combination of the remaining dataset objects. This framework is further enhanced by using the multilayer graphs process combining NNLS with L2graph. The L2graph is a sparse similarity graph, which conveys complementary information to NNLS coding. A criterion for the complementary action of the two graphs in terms of graph distance is also presented. Experimental results conducted on SHREC10, SHREC11 and SCHREC15 datasets validate the excellent performance of our clustering framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bai S, Zhou Z, Wang J, Bai X, Latecki LJ, Tian Q (2017) Ensemble diffusion for retrieval. ICCV

  2. Ben Hamza A (2016) Graph regularized sparse coding for 3D shape clustering. Knowl-Based Syst 92:92–103

    Article  Google Scholar 

  3. Bro R, De Jong S (1997) A fast non-negativity-constrained least squares algorithm. J Chemom 11(5):393

    Article  Google Scholar 

  4. Bu S, Liu Z, Han J, Wu J, Ji R (2014) Learning high-level feature by deep belief networks for 3-D model retrieval and recognition. IEEE Trans Multimed 24(16):2154–2167

    Article  Google Scholar 

  5. Bunke H, Shearer K (1998) A graph distance metric based on the maximal common subgraph. Pattern Recogn Lett 19:255–259

    Article  MATH  Google Scholar 

  6. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    MathSciNet  MATH  Google Scholar 

  7. Chaudhari AJ et al (2014) Global point signature for shape analysis of carpal bones. Phys Med Biol 59(4):961–973

    Article  Google Scholar 

  8. Chen Y, He F, Haoran L, Zhang D, Wu Y (2020) A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl Soft Comput. 93

  9. Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with L1-graph for image analysis. IEEE Trans Image Process 19(4):858–866

    Article  MathSciNet  MATH  Google Scholar 

  10. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  11. Dong X, Frossard P, Vandergheynst P, Nefedov N (2013) Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds, IEEE Transact Signal Process 62(4)

  12. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  13. Feng Y, Feng Y, You H, Zhao X, Gao Y (2019) MeshNet: mesh neural network for 3D shape representation, AAAI

    Google Scholar 

  14. Fotopoulou F, Oikonomou S, Economou G (2019) 3D shape classification with NNLS coding and optimal projections technique. Multimed Tools Appl 78(5):1–18. https://doi.org/10.1007/s11042-019-08152-5

    Article  Google Scholar 

  15. Gao S, Tsang I, Chia L (2013) Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications. IEEE Trans Pattern Anal MachIntell 35(1):92–104

    Article  Google Scholar 

  16. Gao Z, Yu Z, Pang X (2014) A compact shape descriptor for triangular surface meshes. Comput-Aid Des 53:62–69

    Article  Google Scholar 

  17. Hamza AB (2016) A graph-theoretic approach to 3D shape classification. Neurocomputing 211:11–21

    Article  Google Scholar 

  18. Han S (2017) Sparse Graph Representation and Its Applications, PhD thesis, https://shuchu.github.io/docs/thesis_ShuchuHan_final.pdf

  19. Huang HC, Chuang YY, Chen CS (2012) Affinity aggregation for spectral clustering, Proceedings CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  20. Kaufman L, Rouseeuw PJ (1990) Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken

    Book  Google Scholar 

  21. Kazmi IK, You L, Zhang JJ (2013) A survey of 2D and 3D shape descriptors, 10th International Conference Computer Graphics, Imaging and Visualization

  22. Lawson CL, Hanson RJ (1974) Solving least-squares problems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  23. Li C, Hamza AB (2014) Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimed Syst 20(3):253–281

    Article  Google Scholar 

  24. Li Y, Ngom A (2013) Classification approach based on non-negative least squares. Neurocomputing

  25. Z. Lian, A.Godil,et.al., A comparison of methods for non-rigid 3D shape retrieval, Pattern Recogn 46(1), 449–461, 2013.

  26. Lian Z, Godil A et.al (2010) SHREC10 track: Non-rigid 3D shape retrieval, Proceedings, Eurographics Workshop on 3D Object Retrieval, Norrköping, Sweden, May 2, 101–108

  27. Lian Z, Zhang J et al. (2015) SHREC15 track: non-rigid 3D shape retrieval, Eurographics workshop on 3D object retrieval, 1–14

  28. Liao B, Jiang Y, Yuan G, Zhu W, Cai L, Cao Z (2014) Learning a weighted meta-sample based parameter free sparse representation classification for microarray data. PLoS ONE, 9(8), Article ID e104314

  29. Lipman Y, Rustamov R, Funkhouser T (2010) Biharmonic distance. ACMTrans Graph 29(3):1–11

    Article  Google Scholar 

  30. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  31. Luciano L, Hamza AB (2017) Deep learning with geodesic moments for 3D shape classification, pattern recognition letters, available online 13 May 2017

  32. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  33. Masoumi M, Hamza AB (2015) Shape classification using spectral graph wavelets, Applied Intelligence, Springer

  34. Masoumi M, Hamza AB (2017) Spectral shape classification: a deep learning approach. J Vis Commun Image Represent 43:198–211

    Article  Google Scholar 

  35. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm, In Proc. Adv. Neural Inf. Process. Syst., 14, Vancouver, BC, Canada, 849–856

  36. Peng X, Yu Z, Yi Z, Tang H (2017) Constructing the L2-graph for robust subspace learning and subspace clustering, IEEE transactions on cybernetics, 47(4)

  37. Qiao LS, Chen SC, Tan XY (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341

    Article  MATH  Google Scholar 

  38. J. Rabin, G. Peyre, et al. (2010) Geodesic Shape Retrieval via Optimal Mass Transport , 11th European Conference on Computer Vision, Sep 2010, Heraklion, Crete, Greece, Springer, 6315/2010, 771–784

  39. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  40. Reuter M, Wolter F, Peinecke N (2006) Laplace–Beltrami spectra as ‘ShapeDNA’ of surfaces and solids. Comput-Aid Des - Elsevier 38(4):342–366

    Article  Google Scholar 

  41. Rouseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65

    Article  Google Scholar 

  42. Rustamov R (2007) Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Eurographics Symposium on Geometry Processing, 225–233

  43. Schenker A, Bunke H, Last M, Kandel A (2006) Polynomial time complexity, graph distance computation for web content mining. In: Basu M, Ho TK (eds) Data complexity in pattern recognition. Advanced Information and Knowledge Processing. Springer, London

    Google Scholar 

  44. Sun M, Hao S, Liu G (2018) Semi-supervised vehicle classification via fusing affinity matrices. Signal Process 149:118–123

    Article  Google Scholar 

  45. Wang Z et al (2016) Sparse coding and its applications in computer vision, World Scientific

  46. Wang D, Wang B, Zhao S, Yao H, Liu H (2017) Off-the-shelf CNN features for 3D object retrieval. Multimed Tools Appl 77:1–17

    Google Scholar 

  47. Wang D, Wang B, Zhao S, Yao H, Liu H (2017) View-based 3D object retrieval with discriminative views. Neurocomputing 252:58–66

    Article  Google Scholar 

  48. Wang D, Yao H, Tombari F, Zhao S, Wang B, Liu H (2019) Learning descriptors with cube loss for view-based 3-D object retrieval, IEEE Transactions on Multimedia, 21(8)

  49. Wu Z, Wang Y, Shou R, Chen B, Liu X (2013) Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput Graph 37:628–637

    Article  Google Scholar 

  50. Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction, Pattern Recognition, Elsevier

  51. Yu H, He F, Yiteng P (2019) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79(10)

  52. Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118

    Article  Google Scholar 

  53. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  MATH  Google Scholar 

  54. Zheng CH, Zhang L, Ng TY, Shiu SCK, Huang DS (2011) Metasample-based sparse representation for tumor classification. IEEE-ACM Trans Comput Biol Bioinform 8(5):1273–1282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foteini Fotopoulou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotopoulou, F., Economou, G. 3D shape clustering with Nonnegative Least Squares coding and fusion on multilayer graphs. Multimed Tools Appl 79, 32607–32622 (2020). https://doi.org/10.1007/s11042-020-09668-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09668-x

Keywords

Navigation