Skip to main content
Log in

A brief survey of visual saliency detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Salient object detection models mimic the behavior of human beings and capture the most salient region/object from the images or scenes, this field contains many important applications in both computer vision and pattern recognition tasks. Despite hundreds of models that have been proposed in this field, but still, it requires a large room for research. This paper demonstrates a detailed overview of the recent progress of saliency detection models in terms of heuristic-based techniques and deep learning-based techniques. we have discussed and reviewed its co-related fields, such as Eye-fixation-prediction, RGBD salient-object-detection, co-saliency object detection, and video-saliency-detection models. We have reviewed the key issues of the current saliency models and discussed future trends and recommendations. The broadly utilized datasets and assessment strategies are additionally investigated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient region detection and segmentation. In: International conference on computer vision systems. Springer, pp 66–75

  2. Achanta R, Hemami S, Estrada F, Susstrunk S Frequency-tuned salient region detection. In: Computer vision and pattern recognition, 2009. cvpr 2009. ieee conference on, 2009. IEEE, pp 1597–1604

  3. Alexe B, Deselaers T, Ferrari V What is an object? In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE conference on, 2010. IEEE, pp 73–80

  4. Avidan S, Shamir A Seam carving for content-aware image resizing. In: ACM Transactions on graphics (TOG), 2007. vol 3. ACM, p 10

  5. Batra D, Kowdle A, Parikh D, Luo J, Chen T icoseg: Interactive co-segmentation with intelligent scribble guidance. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE conference on, 2010. IEEE, pp 3169–3176

  6. Borji A Boosting bottom-up and top-down visual features for saliency estimation. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE conference on, 2012. IEEE, pp 438–445

  7. Borji A (2015) What is a salient object? A dataset and a baseline model for salient object detection. IEEE Trans Image Process 24(2):742–756

    MathSciNet  MATH  Google Scholar 

  8. Borji A, Itti L Scene classification with a sparse set of salient regions. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011. IEEE, pp 1902–1908

  9. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Analysis Mach Intell 35(1):185–207

    Google Scholar 

  10. Borji A, Ahmadabadi M. N, Araabi B. N, Applications (2011) Cost-sensitive learning of top-down modulation for attentional control. Machine Vision 22 (1):61–76

  11. Borji A, Sihite DN, Itti L (2012) Salient object detection: a benchmark. In: computer vision–ECCV 2012. Springer, pp 414–429

  12. Borji A, Sihite DN, Itti L (2013) What stands out in a scene? A study of human explicit saliency judgment. Vis Res 91:62–77

    MATH  Google Scholar 

  13. Borji A, Cheng M. M, Jiang H, Li J (2014) Salient object detection: A survey. arXiv preprint. arXiv preprint arXiv: 2 (4)

  14. Chang K. Y, Liu T. L, Chen H. T, Lai S. H (2011) Fusing generic objectness and visual saliency for salient object detection.

  15. Chang K. Y, Liu T. L, Lai S. H From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model. In: Computer vision and pattern recognition (cvpr), 2011 ieee conference on, 2011. IEEE, pp 2129–2136

  16. Chen H, Li Y progressively complementarity-aware fusion network for RGB-D salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. pp 3051–3060

  17. Chen T, Cheng M. M, Tan P, Shamir A, Hu S. M Sketch2photo: Internet image montage. In: ACM Transactions on Graphics (TOG), 2009. vol 5. ACM, p 124

  18. Chen T, Lin L, Liu L, Luo X, Li X (2016) DISC: deep image saliency computing via progressive representation learning. IEEE Trans Neural Netw Learning Syst 27(6):1135–1149

    MathSciNet  Google Scholar 

  19. Chen L. C, Papandreou G, Kokkinos I, Murphy K, Yuille A. L, intelligence m (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis 40 (4):834–848

  20. Chen C, Li S, Wang Y, Qin H, Hao A (2017) Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion. IEEE Trans Image Process 26(7):3156–3170

    MathSciNet  MATH  Google Scholar 

  21. Chen S, Tan X, Wang B, Hu X Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), 2018. pp 234–250

  22. Cheng Y, Fu H, Wei X, Xiao J, Cao X Depth enhanced saliency detection method. In: Proceedings of international conference on internet multimedia computing and service, 2014. ACM, p 23

  23. Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM (2015) Global contrast based salient region detection. IEEE Trans Pattern Analysis Mach Intell 37(3):569–582

    Google Scholar 

  24. Chia A. Y. S, Zhuo S, Gupta R. K, Tai Y. W, Cho S. Y, Tan P, Lin S Semantic colorization with internet images. In: ACM Transactions on Graphics (TOG), 2011. vol 6. ACM, p 156

  25. Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127

    Google Scholar 

  26. Cong R, Lei J, Fu H, Cheng M. M, Lin W, Huang Q (2018) Review of visual saliency detection with comprehensive information. arXiv preprint arXiv:03391

  27. Cong R, Lei J, Fu H, Huang Q, Cao X, Ling N (2018) HSCS: hierarchical Sparsity based co-saliency detection for RGBD images. IEEE Transactions on Multimedia

  28. Cong R, Lei J, Fu H, Huang Q, Cao X, Hou C (2018) Co-saliency detection for RGBD images based on multi-constraint feature matching and cross label propagation. IEEE Trans Image Process 27(2):568–579

    MathSciNet  MATH  Google Scholar 

  29. Cong R, Lei J, Fu H, Porikli F, Huang Q, Hou C (2019) Video saliency detection via Sparsity-based reconstruction and propagation. IEEE Trans Image Process

  30. Duan L, Wu C, Miao J, Qing L, Fu Y Visual saliency detection by spatially weighted dissimilarity. In: CVPR 2011, 2011. IEEE, pp 473–480

  31. Erdem E, Erdem A (2013) Visual saliency estimation by nonlinearly integrating features using region covariances. J Vis 13(4):11–11

    Google Scholar 

  32. Fan Q, Qi C (2016) Saliency detection based on global and local short-term sparse representation. Neurocomputing 175:81–89

    Google Scholar 

  33. Fang Y, Wang J, Narwaria M, Le Callet P, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Processing 23(6):2625–2636

    MathSciNet  MATH  Google Scholar 

  34. Fang Y, Lin W, Chen Z, Tsai CM, Lin CW (2014) A video saliency detection model in compressed domain. IEEE transactions on circuits systems for video technology 24(1):27–38

    Google Scholar 

  35. Fang Y, Ding G, Li J, Fang Z (2019) Deep3DSaliency: deep stereoscopic video saliency detection model by 3D convolutional networks. IEEE Trans Image Process 28(5):2305–2318

    MathSciNet  Google Scholar 

  36. Feng S, Xu D, Yang X (2010) Attention-driven salient edge (s) and region (s) extraction with application to CBIR. Signal Process 90(1):1–15

    MATH  Google Scholar 

  37. Feng D, Barnes N, You S (2016) McCarthy C local background enclosure for RGB-D salient object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 2343–2350

    Google Scholar 

  38. Feng M, Lu H, Ding E attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. pp 1623–1632

  39. Frintrop S, García G. M, Cremers A. B. A cognitive approach for object discovery. In: Pattern Recognition (ICPR), 2014 22nd International Conference on, 2014. IEEE, pp 2329–2334

  40. Fu H, Cao X, Tu Z (2013) Cluster-based co-saliency detection. IEEE Trans Image Process 22(10):3766–3778

    MathSciNet  MATH  Google Scholar 

  41. Fu H, Xu D, Lin S, Liu J object-based RGBD image co-segmentation with mutex constraint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. pp 4428–4436

  42. Fu K, Zhao Q, Gu I (2018) Refinet: a deep segmentation assisted refinement network for salient object detection. IEEE Transactions on Multimedia

  43. Ge C, Fu K, Liu F, Bai L, Yang J (2016) Co-saliency detection via inter and intra saliency propagation. Signal Process Image Commun 44:69–83

    Google Scholar 

  44. Girshick R, Donahue J, Darrell T, Malik J rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014. pp 580–587

  45. Goferman S, Manor ZLL, Tal A (2010) Context-aware saliency detection. In: CVPR 2:3

    Google Scholar 

  46. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE transactions on pattern analysis machine intelligence 34(10):1915–1926

    Google Scholar 

  47. Gokturk S. B, Yalcin H, Bamji C A time-of-flight depth sensor-system description, issues and solutions. In: Computer Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conference on, 2004. IEEE, pp 35–35

  48. Goldberg C, Chen T, Zhang F. L, Shamir A, Hu S. M Data-driven object manipulation in images. In: Computer Graphics Forum, 2012. vol 2pt1. Wiley Online Library, pp 265–274

  49. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset.

  50. Guo J, Ren T, Bei J Salient object detection for rgb-d image via saliency evolution. In: Multimedia and Expo (ICME), 2016 IEEE International Conference on, 2016. IEEE, pp 1–6

  51. Guo F, Wang W, Shen J, Shao L, Yang J, Tao D, Tang Y. Y. J. I. ToC (2017) Video saliency detection using object proposals.

  52. Guo F, Wang W, Shen J, Shao L, Yang J, Tao D, Tang Y. Y. J. Itoc (2017) Video saliency detection using object proposals. (99):1–12

  53. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor: a review. IEEE transactions on cybernetics 43(5):1318–1334

    Google Scholar 

  54. Han J, Chen H, Liu N, Yan C, Li X (2017) CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion. IEEE Transactions on Cybernetics

    Google Scholar 

  55. Han J, Cheng G, Li Z, Zhang D (2018) A unified metric learning-based framework for co-saliency detection. IEEE Transactions on Circuits Systems for Video Technology 28(10):2473–2483

    Google Scholar 

  56. Harel J, Koch C (2007) Perona P graph-based visual saliency. Advances in neural information processing systems, In, pp 545–552

    Google Scholar 

  57. He S, Lau RW, Liu W, Huang Z, Yang Q (2015) Supercnn: a superpixelwise convolutional neural network for salient object detection. Int J Comput Vis 115(3):330–344

    MathSciNet  Google Scholar 

  58. He K, Zhang X, Ren S, Sun J deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 770–778

  59. Heidemann G (2004) Focus-of-attention from local color symmetries. IEEE Transactions on Pattern Analysis Machine Intelligence 26(7):817–830

    Google Scholar 

  60. Hou X, Zhang L Saliency detection: A spectral residual approach. In: Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007. IEEE, pp 1–8

  61. Hou Q, Cheng M. M, Hu X, Borji A, Tu Z, Torr P Deeply supervised salient object detection with short connections. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), 2017. IEEE, pp 5300–5309

  62. Huang H, Zhang L, Zhang H. C Arcimboldo-like collage using internet images. In: ACM transactions on graphics (TOG), 2011. vol 6. ACM, p 155

  63. Huang R, Feng W, Sun J (2017) Color feature reinforcement for cosaliency detection without single saliency residuals. IEEE Signal Processing Letters 24(5):569–573

    Google Scholar 

  64. Imamoglu N, Lin W, Fang Y (2013) A saliency detection model using low-level features based on wavelet transform. IEEE transactions on multimedia 15(1):96–105

    Google Scholar 

  65. Itti L (2005) Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Vis Cogn 12(6):1093–1123

    Google Scholar 

  66. Itti L, Koch C Comparison of feature combination strategies for saliency-based visual attention systems. In: Human vision and electronic imaging IV, 1999. International Society for Optics and Photonics, pp 473–483

  67. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Analysis Machine Intelligence 20(11):1254–1259

    Google Scholar 

  68. Jaderberg M, Simonyan K (2015) Zisserman a spatial transformer networks. Advances in neural information processing systems, In, pp 2017–2025

    Google Scholar 

  69. Jia Y (2013) Han M category-independent object-level saliency detection. Proceedings of the IEEE international conference on computer vision, In, pp 1761–1768

    Google Scholar 

  70. Jian M, Dong J, Ma J (2011) Image retrieval using wavelet-based salient regions. The Imaging Science Journal 59(4):219–231

    Google Scholar 

  71. Jian M, Lam KM, Dong J, Shen L (2015) Visual-patch-attention-aware saliency detection. IEEE Trans Cybernetics 45(8):1575–1586

    Google Scholar 

  72. Jian M, Zhang W, Yu H, Cui C, Nie X, Zhang H, Yin Y (2018) Saliency detection based on directional patches extraction and principal local color contrast. Journal of Visual Communication Image Representation 57:1–11

    Google Scholar 

  73. Jian M, Zhao R, Sun X, Luo H, Zhang W, Zhang H, Dong J, Yin Y, Lam KM (2018) Saliency detection based on background seeds by object proposals and extended random walk. Journal of Visual Communication Image Representation 57:202–211

    Google Scholar 

  74. Jian M, Qi Q, Dong J, Sun X, Sun Y, Lam KM (2018) Saliency detection using quaternionic distance based weber local descriptor and level priors. Multimedia tools applications 77(11):14343–14360

    Google Scholar 

  75. Jian M, Yin Y, Dong J, Lam K. M (2018) Content-based image retrieval via a hierarchical-local-feature extraction scheme. Multimedia Tools Applications:1–19

  76. Jian M, Qi Q, Dong J, Yin Y, Lam KM (2018) Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection. Journal of visual communication image representation 53:31–41

    Google Scholar 

  77. Jian M, Zhou Q, Cui C, Nie X, Luo H, Zhao J, Yin Y (2019) Assessment of feature fusion strategies in visual attention mechanism for saliency detection. Pattern Recogn Lett 127:37–47

    Google Scholar 

  78. Jian M, Qi Q, Yu H, Dong J, Cui C, Nie X, Zhang H, Yin Y, Lam KM (2019) The extended marine underwater environment database and baseline evaluations. Appl Soft Comput 80:425–437

    Google Scholar 

  79. Jiang H, Wang J, Yuan Z, Liu T, Zheng N, Li S Automatic salient object segmentation based on context and shape prior. In: BMVC, 2011. vol 7. p 9

  80. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N (2013) Li S salient object detection: a discriminative regional feature integration approach. Proceedings of the IEEE conference on computer vision and pattern recognition, In, pp 2083–2090

    Google Scholar 

  81. Jiang B, Zhang L, Lu H, Yang C (2013) Yang M-H saliency detection via absorbing markov chain. Proceedings of the IEEE international conference on computer vision, In, pp 1665–1672

    Google Scholar 

  82. Jiang P, Ling H, Yu J (2013) Peng J salient region detection by ufo: uniqueness, focusness and objectness. Proceedings of the IEEE international conference on computer vision, In, pp 1976–1983

    Google Scholar 

  83. Ju R, Ge L, Geng W, Ren T, Wu G Depth saliency based on anisotropic center-surround difference. In: Image Processing (ICIP), 2014 IEEE International Conference on, 2014. IEEE, pp 1115–1119

  84. Ju R, Liu Y, Ren T, Ge L, Wu G (2015) Depth-aware salient object detection using anisotropic center-surround difference. Signal Process Image Commun 38:115–126

    Google Scholar 

  85. Judd T, Ehinger K, Durand F, Torralba A Learning to predict where humans look. In: Computer Vision, 2009 IEEE 12th international conference on, 2009. IEEE, pp 2106–2113

  86. Judd-a dataset.n.d. http://ilab.usc.edu/borji.

  87. Kim J, Pavlovic V. A shape-based approach for salient object detection using deep learning. In: European Conference on Computer Vision, 2016. Springer, pp 455–470

  88. Kim J, Pavlovic V. A shape preserving approach for salient object detection using convolutional neural networks. In: Pattern Recognition (ICPR), 2016 23rd International Conference on, 2016. IEEE, pp 609–614

  89. Kim G, Xing E. P, Fei-Fei L, Kanade T Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: 2011 International Conference on Computer Vision, 2011. IEEE, pp 169–176

  90. Kim H, Kim Y, Sim JY, Kim CS (2015) Spatiotemporal saliency detection for video sequences based on random walk with restart. IEEE Trans Image Process 24(8):2552–2564

    MathSciNet  MATH  Google Scholar 

  91. Ko BC, Nam JY (2006) Object-of-interest image segmentation based on human attention and semantic region clustering. JOSA A 23(10):2462–2470

    Google Scholar 

  92. Koch C, Ullman S (1987) Shifts in selective visual attention: towards the underlying neural circuitry. In: Matters of intelligence. Springer, pp 115–141

  93. Koehler K, Guo F, Zhang S, Eckstein MP (2014) What do saliency models predict? J Vis 14(3):14–14

    Google Scholar 

  94. Koltun V Efficient inference in fully connected crfs with gaussian edge potentials. In: NIPS, 2011. Citeseer,

  95. Kootstra G, Nederveen A, De Boer B Paying attention to symmetry. In: British Machine Vision Conference (BMVC2008), 2008. The British Machine Vision Association and Society for Pattern Recognition, pp 1115–1125

  96. Krähenbühl P, Koltun V efficient inference in fully connected crfs with gaussian edge potentials. In: Advances in neural information processing systems, 2011. pp 109–117

  97. Krähenbühl P, Koltun V Geodesic object proposals. In: European conference on computer vision, 2014. Springer, pp 725–739

  98. Kruthiventi S. S, Gudisa V, Dholakiya J. H, Venkatesh Babu R saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp 5781–5790

  99. Kuen J, Wang Z, Wang G recurrent attentional networks for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp 3668–3677

  100. Lang C, Nguyen T. V, Katti H, Yadati K, Kankanhalli M, Yan S (2012) Depth matters: influence of depth cues on visual saliency. In: computer vision–ECCV 2012. Springer, pp 101-115

  101. Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model the bottom-up visual attention. IEEE transactions on pattern analysis machine intelligence 28:802–817

    Google Scholar 

  102. Le Meur O, Le Callet P, Barba D (2007) Predicting visual fixations on video based on low-level visual features. Vis Res 47(19):2483–2498

    Google Scholar 

  103. Le T. N, Sugimoto A SpatioTemporal utilization of deep features for video saliency detection. In: Multimedia & Expo Workshops (ICMEW), 2017 IEEE International Conference on, 2017. IEEE, pp 465–470

  104. Le T. N, Sugimoto A Deeply supervised 3D recurrent FCN for salient object detection in videos. In, 2017. BMVC,

  105. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  106. Lee G, Tai YW (2016) Kim J deep saliency with encoded low level distance map and high level features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 660–668

    Google Scholar 

  107. Lee C. Y, Xie S, Gallagher P, Zhang Z, Tu Z deeply-supervised nets. In: Artificial Intelligence and Statistics, 2015. pp 562–570

  108. Li G (2015) Yu Y visual saliency based on multiscale deep features. Proceedings of the IEEE conference on computer vision and pattern recognition, In, pp 5455–5463

    Google Scholar 

  109. Li G (2016) Yu Y deep contrast learning for salient object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 478–487

    Google Scholar 

  110. Li H, Ngan K. N (2011) A co-saliency model of image pairs. IEEE Trans Image Process 20 (12):3365–3375

  111. Li X, Lu H, Zhang L, Ruan X, Yang MH (2013) saliency detection via dense and sparse reconstruction. In: Proceedings of the IEEE international conference on computer vision, pp 2976–2983

    Google Scholar 

  112. Li X, Li Y, Shen C, Dick A (2013) Van Den Hengel a contextual hypergraph modeling for salient object detection. Proceedings of the IEEE international conference on computer vision, In, pp 3328–3335

    Google Scholar 

  113. Li F, Kim T, Humayun A, Tsai D, Rehg J. M video segmentation by tracking many figure-ground segments. In: Proceedings of the IEEE International Conference on Computer Vision, 2013. pp 2192–2199

  114. Li L, Wu Z, Huang Q, Jiang S, Zha Z (2013) Partial-duplicate image retrieval via saliency-guided visually matching. IEEE Multimedia 99(1):1

    Google Scholar 

  115. Li N, Ye J, Ji Y, Ling H (2014) Yu J saliency detection on light field. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 2806–2813

    Google Scholar 

  116. Li L, Liu Z, Zou W, Zhang X, Le Meur O Co-saliency detection based on region-level fusion and pixel-level refinement. In: Multimedia and Expo (ICME), 2014 IEEE International Conference on, 2014. IEEE, pp 1–6

  117. Li Y, Hou X, Koch C, Rehg J. M, Yuille A. L the secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. pp 280–287

  118. Li C, Yuan Y, Cai W, Xia Y (2015) Dagan Feng D robust saliency detection via regularized random walks ranking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 2710–2717

    Google Scholar 

  119. Li H, Lu H, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186

    MathSciNet  MATH  Google Scholar 

  120. Li Y, Fu K, Liu Z, Yang J (2015) Efficient saliency-model-guided visual co-saliency detection. IEEE Signal Processing Letters 22(5):588–592

    Google Scholar 

  121. Li X, Zhao L, Wei L, Yang MH, Wu F, Zhuang Y, Ling H, Wang J (2016) Deepsaliency: multi-task deep neural network model for salient object detection. IEEE Trans Image Process 25(8):3919–3930

    MathSciNet  MATH  Google Scholar 

  122. Li K, Zhang J, Tao W (2016) Unsupervised co-segmentation for indefinite number of common foreground objects. IEEE Trans Image Process 25(4):1898–1909

    MathSciNet  MATH  Google Scholar 

  123. Li H, Chen J, Lu H, Chi Z (2017) CNN for saliency detection with low-level feature integration. Neurocomputing 226:212–220

    Google Scholar 

  124. Li G, Xie Y, Lin L, Yu Y Instance-level salient object segmentation. In: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE conference on, 2017. IEEE, pp 247–256

  125. Li X, Yang F, Cheng H, Liu W, Shen D Contour knowledge transfer for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), 2018. pp 355–370

  126. Li J, Xia C, Chen X (2018) A benchmark dataset and saliency-guided stacked autoencoders for video-based salient object detection. IEEE Trans Image Process 27(1):349–364

    MathSciNet  MATH  Google Scholar 

  127. Li T, Song H, Zhang K, Liu Q, Lian W (2019) Low-rank weighted co-saliency detection via efficient manifold ranking. Multimedia Tools Applications:1–16

  128. Liang M (2015) Hu X recurrent convolutional neural network for object recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 3367–3375

    Google Scholar 

  129. Liu N (2016) Han J Dhsnet: deep hierarchical saliency network for salient object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 678–686

    Google Scholar 

  130. Liu N, Han J, Yang M (2018) PiCANet: learning pixel-wise contextual attention for saliency detection. IEEE conference on computer vision and pattern recognition 2018:3089–3098

  131. Liu T, Sun J, Zheng N. N, Tang X, Shum H. Y Learning to detect a salient object. In: Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007. IEEE, pp 1–8

  132. Liu T, Sun J, Zheng N, Tang X, Shum H Learning to detect a salient object, 2007. In. CVPR,

  133. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H. Y. J. I ToPa, intelligence m (2011) Learning to detect a salient object. 33 (2):353–367

  134. Liu R, Cao J, Lin Z (2014) Shan S adaptive partial differential equation learning for visual saliency detection. Proceedings of the IEEE conference on computer vision and pattern recognition, In, pp 3866–3873

    Google Scholar 

  135. Liu Z, Zhang X, Luo S, Le Meur O (2014) Superpixel-based spatiotemporal saliency detection. IEEE transactions on circuits systems for video technology 24(9):1522–1540

    Google Scholar 

  136. Liu Z, Li J, Ye L, Sun G, Shen L (2017) Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation. IEEE transactions on circuits systems for video technology 27(12):2527–2542

    Google Scholar 

  137. Liu L, Zhang H, Jing G, Guo Y, Chen Z, Wang W, Graphics C (2018) Correlation-preserving photo collage. IEEE Trans Visual 6:1956–1968

    Google Scholar 

  138. Liu Y, Han J, Zhang Q, Wang L (2018) Salient object detection via two-stage graphs. IEEE Trans Circuits Systems Video Tech

  139. Liu J.J, Hou Q, Cheng M. M, Feng J, Jiang J (2019) A simple pooling-based Design for Real-Time Salient Object Detection. arXiv preprint arXiv:09569

  140. Liu D, Hu Y, Zhang K, Chen Z Two-Stream Refinement Network for RGB-D Saliency Detection. In: 2019 IEEE International Conference on Image Processing (ICIP), 2019. IEEE, pp 3925–3929

  141. Long J, Shelhamer E, Darrell T fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp 3431–3440

  142. Luo Z, Mishra A. K, Achkar A, Eichel J. A, Li S, Jodoin P. M Non-local Deep Features for Salient Object Detection. In: CVPR, 2017. vol 6. p 7

  143. Ma Y. F, Zhang H. J Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the eleventh ACM international conference on Multimedia, 2003. ACM, pp 374–381

  144. Ma Y. F, Zhang H. J A model of motion attention for video skimming. In: Image Processing. 2002. Proceedings. 2002 International Conference on, 2002. IEEE, pp I-I

  145. Ma Y. F, Lu L, Zhang H. J, Li M. A user attention model for video summarization. In: Proceedings of the tenth ACM international conference on Multimedia, 2002. ACM, pp 533–542

  146. Margolin R, Tal A (2013) Zelnik-Manor L what makes a patch distinct? Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 1139–1146

    Google Scholar 

  147. Meger D, Forssén PE, Lai K, Helmer S, McCann S, Southey T, Baumann M, Little JJ, Lowe DG (2008) Curious George: an attentive semantic robot. Robotics Autonomous Systems 56(6):503–511

    Google Scholar 

  148. Min K (2019) Corso JJ TASED-net: temporally-aggregating spatial encoder-decoder network for video saliency detection. Proceedings of the IEEE International Conference on Computer Vision, In, pp 2394–2403

    Google Scholar 

  149. Moosmann F, Larlus D, Jurie F Learning saliency maps for object categorization. In: International Workshop on The Representation and Use of Prior Knowledge in Vision (in ECCV'06), 2006.

  150. MSRA10K.n.d. http://mmcheng.net/gsal/.

  151. Mukherjee L, Singh V, Peng J Scale invariant cosegmentation for image groups. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011. NIH Public Access, p 1881

  152. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure applied mathematics 42(5):577–685

    MathSciNet  MATH  Google Scholar 

  153. Niu Y, Geng Y, Li X, Liu F Leveraging stereopsis for saliency analysis. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE conference on, 2012. IEEE, pp 454–461

  154. Oquab M, Bottou L, Laptev I, Sivic J learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014. pp 1717–1724

  155. Parkhurst D, Law K, Niebur E (2002) Modeling the role of salience in the allocation of overt visual attention. Vis Res 42(1):107–123

    Google Scholar 

  156. Peng H, Li B, Ji R, Hu W, Xiong W (2013) Lang C salient object detection via low-rank and structured sparse matrix decomposition. AAAI, In, pp 796–802

    Google Scholar 

  157. Peng H, Li B, Xiong W, Hu W, Ji R Rgbd salient object detection: a benchmark and algorithms. In: European conference on computer vision, 2014. Springer, pp 92–109

  158. Peng H, Li B, Ling H, Hu W, Xiong W, Maybank S (2017) Salient object detection via structured matrix decomposition. IEEE transactions on pattern analysis machine intelligence 39(4):818–832

    Google Scholar 

  159. Perazzi F, Krähenbühl P, Pritch Y, Hornung A Saliency filters: Contrast based filtering for salient region detection. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE conference on, 2012. IEEE, pp 733–740

  160. Perazzi F, Pont-Tuset J, McWilliams B, Van Gool L, Gross M, Sorkine-Hornung A. A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp 724–732

  161. Pont-tuset J Multiscale combinatorial grouping. In: in CVPR, 2014. Citeseer,

  162. Qi W, Cheng MM, Borji A, Lu H, Bai LF (2015) SaliencyRank: two-stage manifold ranking for salient object detection. Computational Visual Media 1(4):309–320

    MATH  Google Scholar 

  163. Qin Y, Lu H, Xu Y (2015) Wang H saliency detection via cellular automata. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 110–119

    Google Scholar 

  164. Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M. B. A. SNet: boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. pp 7479–7489

  165. Qu L, He S, Zhang J, Tian J, Tang Y, Yang Q (2017) RGBD salient object detection via deep fusion. IEEE Trans Image Process 26(5):2274–2285

    MathSciNet  MATH  Google Scholar 

  166. Reisfeld D, Wolfson H, Yeshurun Y (1995) Context-free attentional operators: the generalized symmetry transform. Int J Comput Vis 14(2):119–130

    Google Scholar 

  167. Ren Z, Gao S, Rajan D, Chia L. T, Huang Y Spatiotemporal saliency detection via sparse representation. In: 2012 IEEE International Conference on Multimedia and Expo, 2012. IEEE, pp 158–163

  168. Rother C, Kolmogorov V, Blake A Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (TOG), 2004. vol 3. ACM, pp 309–314

  169. Rother C, Minka T, Blake A, Kolmogorov V Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: Computer Vision and Pattern Recognition, 2006 IEEE computer society conference on, 2006. IEEE, pp 993–1000

  170. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    MathSciNet  Google Scholar 

  171. Sang N, Z. L L, T. X Z (2004) Applications of human visual attention mechanisms in object detection. Infrared Laser Eng 33(1):38–42

    Google Scholar 

  172. Scharfenberger C, Wong A, Clausi DA (2015) Structure-guided statistical textural distinctiveness for salient region detection in natural images. IEEE Trans Image Process 24(1):457–470

    MathSciNet  MATH  Google Scholar 

  173. Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE conference on, 2012. IEEE, pp 853–860

  174. Shen H, Li S, Zhu C, Chang H, Zhang J (2013) Moving object detection in aerial video based on spatiotemporal saliency. Chin J Aeronaut 26(5):1211–1217

    Google Scholar 

  175. Shi K, Wang K, Lu J (2013) Lin L Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 2115–2122

    Google Scholar 

  176. Shi J, Yan Q, Xu L, Jia J (2016) Hierarchical image saliency detection on extended CSSD. IEEE Trans Pattern Analysis Mach Intell 38(4):717–729

    Google Scholar 

  177. Simonyan K, Zisserman A Japa (2014) Very deep convolutional networks for large-scale image recognition.

  178. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv

  179. Song H, Liu Z, Xie Y, Wu L, Huang M (2016) RGBD co-saliency detection via bagging-based clustering. IEEE Signal Processing Letters 23(12):1722–1726

    Google Scholar 

  180. Song H, Liu Z, Du H, Sun G, Le Meur O, Ren T (2017) Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans Image Processing 26(9):4204–4216

    MathSciNet  MATH  Google Scholar 

  181. “Stereo camera.n.d. https://en.wikipedia.org/wiki/Stereo_camera.

  182. Sugano Y, Matsushita Y, Sato Y Calibration-free gaze sensing using saliency maps. In: Computer vision and pattern recognition (cvpr), 2010 ieee conference on, 2010. IEEE, pp 2667–2674

  183. Tan Z, Wan L, Feng W, Pun C. M Image co-saliency detection by propagating superpixel affinities. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013. IEEE, pp 2114–2118

  184. Tang Y, Wu X, Bu W Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection. In: Proceedings of the 2016 ACM on multimedia conference, 2016. ACM, pp 397–401

  185. Tang Y, Wu X Saliency detection via combining region-level and pixel-level predictions with cnns. In: European Conference on Computer Vision, 2016. Springer, pp 809–825

  186. Tavakoli H. R, Rahtu E, Heikkilä J Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Scandinavian conference on image analysis, 2011. Springer, pp 666–675

  187. Torralba A, Efros A. A Unbiased look at dataset bias. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE conference on, 2011. IEEE, pp 1521–1528

  188. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Google Scholar 

  189. Tsai D, Flagg M, Nakazawa A, Rehg JM (2012) Motion coherent tracking using multi-label MRF optimization. Int J Comput Vis 100(2):190–202

    MathSciNet  Google Scholar 

  190. Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Google Scholar 

  191. Vikram TN, Tscherepanow M, Wrede B (2012) A saliency map based on sampling an image into random rectangular regions of interest. Pattern Recogn 45(9):3114–3124

    Google Scholar 

  192. Wang N, Gong X (2019) Adaptive fusion for RGB-D salient object detection. IEEE Access 7:55277–55284

    Google Scholar 

  193. Wang A, Wang M (2017) RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Signal Processing Letters 24(5):663–667

    Google Scholar 

  194. Wang Q, Zheng W, Piramuthu R grab: visual saliency via novel graph model and background priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp 535–543

  195. Wang Q, Yuan Y, Yan P, Li X (2013) Saliency detection by multiple-instance learning. IEEE transactions on cybernetics 43(2):660–672

    Google Scholar 

  196. Wang L, Lu H, Ruan X (2015) Yang M-H deep networks for saliency detection via local estimation and global search. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 3183–3192

    Google Scholar 

  197. Wang W, Shen J, Shao L (2015) Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans Image Process 24(11):4185–4196

    MathSciNet  MATH  Google Scholar 

  198. Wang W, Shen J, Porikli F saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp 3395–3402

  199. Wang L, Dong S. L, Li H. S, Zhu X. B. A brief survey of low-level saliency detection. In: Information System and Artificial Intelligence (ISAI), 2016 International Conference on, 2016. IEEE, pp 590–593

  200. Wang X, Ma H, Chen X Salient object detection via fast R-CNN and low-level cues. In: Image Processing (ICIP), 2016 IEEE International Conference on, 2016. IEEE, pp 1042–1046

  201. Wang T, Borji A, Zhang L, Zhang P, Lu H a stagewise refinement model for detecting salient objects in images. In: Proceedings of the IEEE International Conference on Computer Vision, 2017. pp 4019–4028

  202. Wang X, Ma H, Chen X, You S (2018) Edge preserving and multi-scale contextual neural network for salient object detection. IEEE Trans Image Process 27(1):121–134

    MathSciNet  MATH  Google Scholar 

  203. Wang W, Shen J, Yang R, Porikli F (2018) A unified spatiotemporal prior based on geodesic distance for video object segmentation. IEEE transactions on pattern analysis machine intelligence 40(1):20–33

    Google Scholar 

  204. Wang W, Shen J, Shao L (2018) Video salient object detection via fully convolutional networks. IEEE Trans Image Process 27(1):38–49

    MathSciNet  MATH  Google Scholar 

  205. Wei Y, Wen F, Zhu W, Sun J Geodesic saliency using background priors. In: European conference on computer vision, 2012. Springer, pp 29–42

  206. Wei L, Zhao S, Bourahla O. E. F, Li X, Wu F (2017) Group-wise deep co-saliency detection. arXiv preprint arXiv:07381

  207. Winn J, Criminisi A, Minka T Object categorization by learned universal visual dictionary. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE international conference on, 2005. IEEE, pp 1800–1807

  208. Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psych: Human Percept Perform 15(3):419

    Google Scholar 

  209. Xi T, Zhao W, Wang H, Lin W (2017) Salient object detection with spatiotemporal background priors for video. IEEE Trans Image Process 26(7):3425–3436

    MathSciNet  MATH  Google Scholar 

  210. Xia C, Li J, Chen X, Zheng A, Zhang Y What is and what is not a salient object? learning salient object detector by ensembling linear exemplar regressors. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), 2017. IEEE, pp 4399–4407

  211. Xie S (2015) Tu Z holistically-nested edge detection. Proceedings of the IEEE international conference on computer vision, In, pp 1395–1403

    Google Scholar 

  212. Xie Y, Lu H, Yang MH (2013) Bayesian saliency via low and mid level cues. IEEE Trans Image Process 22(5):1689–1698

    MathSciNet  MATH  Google Scholar 

  213. Xu J, Jiang M, Wang S, Kankanhalli M. S, Zhao Q. J Jov (2014) Predicting human gaze beyond pixels. 14 (1):28–28

  214. Xue Y, Guo X, Cao X Motion saliency detection using low-rank and sparse decomposition. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, 2012. IEEE, pp 1485–1488

  215. Yan Q, Xu L, Shi J (2013) Jia J hierarchical saliency detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 1155–1162

    Google Scholar 

  216. Yang J, Yang M. H, intelligence m (2017) Top-down visual saliency via joint CRF and dictionary learning. IEEE transactions on pattern analysis 39 (3):576–588

  217. Yang C, Zhang L, Lu H, Ruan X (2013) Yang M-H saliency detection via graph-based manifold ranking. Proceedings of the IEEE conference on computer vision and pattern recognition, In, pp 3166–3173

    Google Scholar 

  218. Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Processing Letters 20(7):637–640

    Google Scholar 

  219. Ye L, Liu Z, Li J, Zhao WL, Shen L (2015) Co-saliency detection via co-salient object discovery and recovery. IEEE Signal Processing Letters 22(11):2073–2077

    Google Scholar 

  220. Yuan Y, Li C, Kim J, Cai W, Feng DD (2018) Dense and sparse labeling with multidimensional features for saliency detection. IEEE Transactions on Circuits Systems for Video Technology 28(5):1130–1143

    Google Scholar 

  221. Zeng Y, Zhang P, Zhang J, Lin Z, Lu H towards high-resolution salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2019. pp 7234–7243

  222. Zhai Y, Shah M Visual attention detection in video sequences using spatiotemporal cues. In: Proceedings of the 14th ACM international conference on Multimedia, 2006. ACM, pp 815–824

  223. Zhang J (2013) Sclaroff S saliency detection: a boolean map approach. Proceedings of the IEEE international conference on computer vision, In, pp 153–160

    Google Scholar 

  224. Zhang D, Han J, Li C, Wang J co-saliency detection via looking deep and wide. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. pp 2994–3002

  225. Zhang D, Meng D, Li C, Jiang L, Zhao Q, Han J a self-paced multiple-instance learning framework for co-saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision, 2015. pp 594–602

  226. Zhang D, Han J, Li C, Wang J, Li X (2016) Detection of co-salient objects by looking deep and wide. Int J Comput Vis 120(2):215–232

    MathSciNet  Google Scholar 

  227. Zhang J, Dai Y, Porikli F Deep salient object detection by integrating multi-level cues. In: Applications of Computer Vision (WACV), 2017 IEEE winter conference on, 2017. IEEE, pp 1–10

  228. Zhang X, Wang T, Qi J, Lu H, Wang G progressive attention guided recurrent network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. pp 714–722

  229. Zhang K, Li T, Liu B, Liu Q co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. pp 3095–3104

  230. Zhao R, Ouyang W, Li H (2015) Wang X saliency detection by multi-context deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, In, pp 1265–1274

    Google Scholar 

  231. Zhao H, Shi J, Qi X, Wang X, Jia J Pyramid scene parsing network. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017. pp 2881–2890

  232. Zhou L, Yang Z, Yuan Q, Zhou Z, Hu D (2015) Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans Image Process 24(11):3308–3320

    MathSciNet  MATH  Google Scholar 

  233. Zhou Z, Wang Y, Wu QJ, Yang CN, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Transactions on Information Forensics security 12(1):48–63

    Google Scholar 

  234. Zhu W, Liang S, Wei Y (2014) Sun J saliency optimization from robust background detection. Proceedings of the IEEE conference on computer vision and pattern recognition, In, pp 2814–2821

    Google Scholar 

  235. Zhu JY, Wu J, Xu Y, Chang E, Tu Z (2015) Unsupervised object class discovery via saliency-guided multiple class learning. IEEE transactions on pattern analysis machine intelligence 37(4):862–875

    Google Scholar 

  236. Zou W (2015) Komodakis N Harf: hierarchy-associated rich features for salient object detection. Proceedings of the IEEE international conference on computer vision, In, pp 406–414

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61876098, 61976123, 61601427); National Key R&D Program of China (2018YFC0830100, 2018YFC0830102); Royal Society-K. C. Wong International Fellowship (NIF\R1\180909); Taishan Young Scholars Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muwei Jian or Yilong Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Jian, M., Hussain, S. et al. A brief survey of visual saliency detection. Multimed Tools Appl 79, 34605–34645 (2020). https://doi.org/10.1007/s11042-020-08849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08849-y

Keywords

Navigation