Skip to main content
Log in

Auditory perception based system for age classification and estimation using dynamic frequency sound

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Human age is a crucial factor in social interaction. It determines the way we interact with others. It is also a relevant forensic issue that can provide helpful information in legal and criminal investigations. Thus, human age estimation has a wide range of real-world applications related to human computer interaction and forensic sciences. Based on auditory perception, in this paper, we investigate a new biometric trait for human age classification and estimation. For this purpose, several techniques of Machine Learning, including Random Forests (RF), Support Vector Machines (SVM), Linear Regression (LR), Polynomial Regression (PR), Ridge Regression (RR) and Artificial Neural Networks (ANNs), are used to estimate the age of the volunteers. To evaluate the performances of our experiment, a dataset of 837 tests have been collected with different ages ranging from 6 to 60 years. The results show a good accuracy between 86% and 92% of reasonable classification and 98.2% of good age estimation with a root-mean-square error of 2.6 years. Results are found to be significant and show that auditory perception is one of the practical interests in real-world applications. The dataset we used will be made publicly available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anguita D, Ghio A, Ridella S, Sterpi D (2009) K-fold cross validation for error rate estimate in support vector machines. In: Proc of the Int Conf on Data Mining, pp 291–297

  2. Barbosa de Sá LC, Lima MAMT, Tomita S, Frota SMMC, Santos GA, Garcia TR (2007) Analysis of high frequency auditory thresholds in individuals aged between 18 and 29 years with no ontological complaints. Rev Bras Otorrinolaringol 73:2

    Google Scholar 

  3. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proce of the fifth ann work on Comp learn theo ACM, pp 144–152

  4. Breiman L (2011) Random forests. Mach Learn 45:123–140

    Google Scholar 

  5. Bukar AM, Ugail H (2017) Automatic age estimation from facial profile view. IET Comp Vis 11(8):650–655

    Google Scholar 

  6. Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  7. Cortes C, Mohri M, Rostamizadeh A (2009) L2 regularization for learning kernels proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence .109-116 AUAI Press

  8. Ceyhan EB, Saĝiroĝlu Ş, Atagün E (2014) Age estimation from fingerprints: Examination of the population in Turkey. In: IEEE 13th Inter Conf Mach Learn Appl IEEE, pp 478–481

  9. Dobry G, Hecht RM, Avigal M, Zigel Y (2011) Supervector dimension reduction for efficient speaker age estimation based on the acoustic speech signal. IEEE Trans on Audio Spe and Lang Proc 19(7):1975–1985

    Google Scholar 

  10. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neucomput 10(7):1895–1923

    Google Scholar 

  11. Dornaika F, Bekhouche SE, Arganda-Carreras I (2020) Robust regression with deep CNNs for facial age estimation: An empirical study. Expert Systems with Applications 141:112942

    Google Scholar 

  12. Eidinger E, Enbar R, Hassner T (2014) Age and gender estimation of unfiltered faces. IEEE Trans Info Forens Secur 1(12):2170–2179

    Google Scholar 

  13. Freire-Aradas A, Phillips C, Lareu MV (2017) Forensic individual age estimation with DNA: from initial approaches to methylation tests Foren sci rev 29 2

  14. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annal Eug 7:179–188

    Google Scholar 

  15. Farhadian M, Salemi F, Saati S, Nafisi N (2019) Dental age estimation using the pulp-to-tooth ratio in canines by neural networks. Imaging science in dentistry 49 (1):19–26

    Google Scholar 

  16. Geoffrey A, Manley DPV (2016) Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hear Res 336:53–62

    Google Scholar 

  17. Guyon I, Saffari A, Dror G, Cawley G (2010) Model selection: beyond the bayesian–frequentist divide. JMLR 11:61–87

    MathSciNet  MATH  Google Scholar 

  18. Haraksim R, Galbally J, Beslay L (2019) Fingerprint growth model for mitigating the ageing effect on children’s fingerprints matching. Pattern Recognition 88:614–628

    Google Scholar 

  19. Ilyas M, Othmani A, Nait-Ali A (2017) Human age estimation using auditory system through dynamic frequency sound.IEEE 2nd BioSMART conf: 1-3

  20. Ilyas M, Alice O, Amine NA (2018) Prediction of hearing loss based on auditory perception: a preliminary study inter work on pre intel med. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Ilyas M, Othmani A, Fournier R, Nait-ali A (2019) Auditory perception based Anti-Spoofing system for human age verification. Electro 8(11):1313

    Google Scholar 

  22. Ilyas M, Othmani A, Nait-ali A (2020) Age Estimation Using Sound Stimulation as a Hidden Biometrics Approach. Springer, Singapore, pp 113–125

    Google Scholar 

  23. Jagannath A, Tsuchido T (2003) Validation of a polynomial regression model: the thermal inactivation of Bacillus subtilis spores in milk. Letters in applied microbiology 37(5):399–404

    Google Scholar 

  24. Lanitis A, Draganova C, Christodoulou C (2004) Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern Part B Cybernetics 34 (1):621–628

    Google Scholar 

  25. Li G, Borj PR, Bergeron L, Bours P (2019) Exploring Keystroke Dynamics and Stylometry Features for Gender Prediction on Chat Data. In: 42nd International Convention on Information and Communication Technology, Electro Microelectron MIPRO, 1049–1054

  26. Li X, Makihara Y, Xu C, Yagi Y, Ren M (2018) Gait-based human age estimation using age group-dependent manifold learning and regression. Multimedia Tools and Applications 77(21):28333–28354

    Google Scholar 

  27. Li X (2018) Gait-based human age estimation using age group-dependent manifold learning and regression. Multi Tools Appl 77:28333–28354

    Google Scholar 

  28. Liu KH, Tsung JL (2019) Structure-Based Human Facial Age Estimation Framework under a Constrained Condition. IEEE Trans Image Proc 28:5187

    MathSciNet  MATH  Google Scholar 

  29. Moyse E (2014) Age estimation from faces and voices: a review. Psychologica Belgica 54(3):255–265

    Google Scholar 

  30. Metze F, Ajmera J, Englert R, Bub U, Burkhardt F, Stegmann J, Littel B (2007) Comparison of four approaches to age and gender recognition for telephone applications. IEEE Inter Conf Acous, Spec Sig Proc 4:IV-1089

    Google Scholar 

  31. Makihara Y, Okumura M, Iwama H, Yagi Y (2011). In: Gait-based age estimation using a whole-generation gait database IEEE IJCB 1–6

  32. Meinl A, Tangl S, Pernicka E, Fenes C, Watzek G (2007) On the applicability of secondary dentin formation to radiological age estimation in young adults. J Foren Sci 52:438–441

    Google Scholar 

  33. Nabila M, Mohammed AI, Yousra BJ (2017) Gait-based human age classification using a silhouette model. IET Biometrics 7(2):116–124

    Google Scholar 

  34. Paolis AD, Bikson JT, Nelson de Ru JA, Packe M, Cardoso L (2017) Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear Res 349:111–128

    Google Scholar 

  35. Paewinsky E, Pfeiffer H, Brinkmann B (2005) Quantification of secondary dentine formation from orthopantomogramme–a contribution to forensic age estimation methods in adults. Inter J Leg Medi 119:27–30

    Google Scholar 

  36. Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic epi genomics: a mini-review. Gerontology 64(4):326–332

    Google Scholar 

  37. Ramlee R, Muda AK, Syed ASS (2013) PCA and LDA as dimension reduction for individuality of handwriting in writer verification. In: 13th Inter Conf Intel Sys Des Appl: 104-108

  38. Ramu T, Suthendran K, Arivoli T (2013) Machine learning based soft biometrics for enhanced keystroke recognition system, Multi Tools Appl,1–17

  39. Rossing T (2007) Springer Handbook of Acoustics 1st ed Springer: 747-748

  40. Rothe R, Timofte R, Van Gool L (2018) Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision 126(2-4):144–157

    MathSciNet  Google Scholar 

  41. Sakata A, Takemura N, Yagi Y (2019) Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans Comp Vis Appl 11(1):4

    Google Scholar 

  42. Scheffer T (1999) Error estimation and model selection. Ph.D.Thesis, Technischen Universität Berlin, School of Com Sci

  43. Seber GA, Lee AJ (2012) Linear regression analysis Vol. 329 John Wiley & Sons

  44. Semwal VB, Neha G, Nandi GC (2019) Human gait state prediction using cellular automata and classification using ELM. In: Machine Intelligence and Signal Analysis , Springer, Singapore, 135–145

  45. Semwal VB, Mondal K (2017) Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach . Neural Computing and Applications 28(3):565–574

    Google Scholar 

  46. Semwal VB, Singha J, Sharma PK, Chauhan A, Behera B (2017) An optimized feature selection technique based on incremental feature analysis for biometric gait data classification. Multi tools appl 76(22):24457–24475

    Google Scholar 

  47. Shafran I, Riley M, Mohri M (2003) Voice signatures. IEEE ASRU 03:31–36

    Google Scholar 

  48. Shen W, Guo Y, Wang Y, Zhao K, Wang B, Yuille AL (2018) Deep regression forests for age estimation. In: Inproceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2304–2313

  49. Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Inform 74:491–503

    Google Scholar 

  50. Stockwell CW, Ades HW, Engström H (2017) XCVII Patterns of hair cell damage after intense auditory stimulation. Ann Otol Rhinol Laryngol Suppl 78:1144–1168

    Google Scholar 

  51. Stuart R, Howel lP (2011) Signals and Systems for Speech and Hearing. 2nd ed, BRILL: 163

  52. Tingting Y, Junqian W, Lintai W (2019) CAAI Transactions on Intelligence Technology. Three-stage network for age estimation 4(2):122–126

    Google Scholar 

  53. Tsimperidis G, Katos V, Rostami S (2017) Age detection through keystroke dynamics from user authentication failures. IJDCF 9(1):1–16

    Google Scholar 

  54. Uzun Y, Bicakci K, Uzunay Y (2015) Could We Distinguish Child Users from Adults Using Keystroke Dynamics? arXiv:1511.05672

  55. Wen J, Xu Y, Li Z, Ma Z, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Networks 102:36–47

    MATH  Google Scholar 

  56. Williams G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19(1):9–17

    Google Scholar 

  57. Zhu H, Zhang Y, Li G, Zhang J, Shan H (2020) Ordinal distribution regression for gait-based age estimation. Science China Information Sciences 63(2):120102

    Google Scholar 

  58. Zwicker E (1961) Subdivision of the audible frequency range into critical bands frequenzgruppen. J Acoust Soc Am 33:248

    Google Scholar 

  59. Zubakov D, Liu F, Kokmeijer I, Choi Y, van Meurs JB, van IJcken WF, Lewin J (2016) Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Science International: Genetics 24:33–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, M., Othmani, A. & Nait-ali, A. Auditory perception based system for age classification and estimation using dynamic frequency sound. Multimed Tools Appl 79, 21603–21626 (2020). https://doi.org/10.1007/s11042-020-08843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08843-4

Keywords

Navigation