Skip to main content
Log in

A framework for automated bone age assessment from digital hand radiographs

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Bone age assessment (BAA) is a method or technique that helps in predicting the age of a person whose age is unavailable and can also be used to find growth disorders if any. The automated bone age assessment system (ABAA) depends heavily on the efficiency of the feature extraction stage and the accuracy of a successive classification stage of the system. This paper has presented the implementation and analysis of feature extraction methods like Bag of features (BoF), Histogram of Oriented Gradients (HOG), and Texture Feature Analysis (TFA) methods on the segmented phalangeal region of interest (PROI) images and segmented radius-ulna region of interest (RUROI) images. Artificial Neural Networks (ANN) and Random Forest classifiers are used for evaluating classification problems. The experimental results obtained by BoF method for feature extraction along with Random Forest for classification have outperformed preceding techniques available in the literature. The mean error (ME) accomplished is 0.58 years and RMSE value of 0.77 years for PROI images and mean error of 0.53 years and RMSE of 0.72 years was achieved for RUROI images. Additionally results also proved that prior knowledge of gender of the person gives better results. The dataset contains radiographs of the left hand for an age range of 0-18 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. Springer, Berlin, pp 404–417. https://doi.org/10.1007/11744023_32

    Google Scholar 

  2. Breiman L (2001) Random forests. Machine Learning 45(1):5–32

    Article  Google Scholar 

  3. Bui TD, Lee JJ, Shin J (2019) Incorporated region detection and classification using deep convolutional networks for bone age assessment. Artif Intell Med 97:1–8

    Article  Google Scholar 

  4. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, (2004), pp 1–22

  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 1, pp 886–893, DOI https://doi.org/10.1109/CVPR.2005.177

  6. Gertych A, Zhang A, Sayre J, Pospiech-Kurkowska S, Huang H (2007) Bone age assessment of children using a digital hand atlas. Computerized Medical Imaging and Graphics 31(4):322–331 https://doi.org/10.1016/j.compmedimag.2007.02.012. http://www.sciencedirect.com/science/article/pii/S0895611107000274, computer-aided Diagnosis (CAD) and Image-guided Decision Support

  7. Gilsanz V, Ratib O (2005) Hand bone age: A digital atlas of skeletal maturity. Springer Science & Business Media

  8. Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. IEEE Trans Instrum Meas 59(10):2539–2553. https://doi.org/10.1109/TIM.2010.2058210

    Article  Google Scholar 

  9. Giordano D, Kavasidis I, Spampinato C (2016) Modeling skeletal bone development with hidden markov models. Comput Methods Programs Biomed 124:138–147

    Article  Google Scholar 

  10. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education, India

    Google Scholar 

  11. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. The American Journal of the Medical Sciences 238(3)

  12. Güraksin G E, Uğuz H, Baykan ÖK (2016) Bone age determination in young children (newborn to 6 years old) using support vector machines. Turk J Elec Eng & Comp Sci 24(3):1693–1708

    Article  Google Scholar 

  13. Harmsen M, Fischer B, Schramm H, Seidl T, Deserno TM (2013) Support vector machine classification based on correlation prototypes applied to bone age assessment. IEEE J Biomed Health Inform 17(1):190–197. https://doi.org/10.1109/TITB.2012.2228211

    Article  Google Scholar 

  14. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  15. Hsieh CW, Jong TL, Tiu CM (2007) Bone age estimation based on phalanx information with fuzzy constrain of carpals. Med Biol Eng Comput 45(3):283–295. https://doi.org/10.1007/s11517-006-0155-9

    Article  Google Scholar 

  16. Hsieh CW, Liu TC, Jong TL, Tiu CM (2010) A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment. Med Biol Eng Comput 48(6):579–588. https://doi.org/10.1007/s11517-010-0609-y

    Article  Google Scholar 

  17. Kashif M, Jonas S, Haak D, Deserno TM (2015) Bone age assessment meets SIFT. ProcSPIE 9414:9414–9414 – 7 . https://doi.org/10.1117/12.2074572

    Article  Google Scholar 

  18. Kashif M, Deserno TM, Haak D, Jonas S (2016) Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? a general question answered for bone age assessment. Comput Biol Med 68(Supplement C):67–75 . https://doi.org/10.1016/j.compbiomed.2015.11.006. http://www.sciencedirect.com/science/article/pii/S0010482515003741

    Article  Google Scholar 

  19. Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4):427–441. https://doi.org/10.1007/s10278-017-9955-8

    Article  Google Scholar 

  20. Liu J, Qi J, Liu Z, Ning Q, Luo X (2008) Automatic bone age assessment based on intelligent algorithms and comparison with tw3 method. Comput Med Imaging Graph 32(8):678–684. https://doi.org/10.1016/j.compmedimag.2008.08.005. http://www.sciencedirect.com/science/article/pii/S0895611108000827

    Article  Google Scholar 

  21. Loizou CP, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput Methods Programs Biomed 114(1):109–124 . https://doi.org/10.1016/j.cmpb.2014.01.018. http://www.sciencedirect.com/science/article/pii/S0169260714000327

    Article  Google Scholar 

  22. Pietka E, McNitt-Gray MF, Kuo ML, Huang HK (1991) Computer-assisted phalangeal analysis in skeletal age assessment. IEEE Trans Med Imaging 10(4):616–620. https://doi.org/10.1109/42.108597

    Article  Google Scholar 

  23. Pietka E, Kaabi L, Kuo ML, Huang HK (1993) Feature extraction in carpal-bone analysis. IEEE Trans Med Imaging 12(1):44–49. https://doi.org/10.1109/42.222665

    Article  Google Scholar 

  24. Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Integration of computer assisted bone age assessment with clinical pacs. Comput Med Imaging Graph 27(2):217–228 . https://doi.org/10.1016/S0895-6111(02)00076-9. http://www.sciencedirect.com/science/article/pii/S0895611102000769, picture Archiving and Communication Systems 20 Years Later

    Article  Google Scholar 

  25. Rucci M, Coppini G, Nicoletti I, Cheli D, Valli G (1995) Automatic analysis of hand radiographs for the assessment of skeletal age: A subsymbolic approach. Comput Biomed Res 28(3):239–256 . https://doi.org/10.1006/cbmr.1995.1016. http://www.sciencedirect.com/science/article/pii/S0010480985710166

    Article  Google Scholar 

  26. Seal A, Bhattacharjee D, Nasipuri M (2016) Human face recognition using random forest based fusion of à-trous wavelet transform coefficients from thermal and visible images. AEU - International Journal of Electronics and Communications 70 (8):1041–1049 . https://doi.org/10.1016/j.aeue.2016.04.016. http://www.sciencedirect.com/science/article/pii/S1434841116301418

    Article  Google Scholar 

  27. Seok J, Kasa-Vubu J, DiPietro M, Girard A (2016) Expert system for automated bone age determination. Expert Syst Appl 50:75–88

    Article  Google Scholar 

  28. Simu S, Lal S (2017) Automated bone age assessment using bag of features and random forests. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp 911–915, https://doi.org/10.1109/ISS1.2017.8389311

  29. Simu S, Lal S, Fadte K, Harlapur A (2017) Fully automatic segmentation of phalanges from hand radiographs for bone age assessment. Comput Methods Biomech Biomed Eng Imaging Vis 0(0):1–26. https://doi.org/10.1080/21681163.2017.1416491

    Article  Google Scholar 

  30. Simu S, Lal S, Nagarsekar P, Naik A (2017) Fully automatic roi extraction and edge-based segmentation of radius and ulna bones from hand radiographs. Biocybern Biomed Eng 37(4):718–732 . https://doi.org/10.1016/j.bbe.2017.07.004. http://www.sciencedirect.com/science/article/pii/S0208521617300918

    Article  Google Scholar 

  31. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in x-ray images. Med Image Anal 36(Supplement C):41–51 . https://doi.org/10.1016/j.media.2016.10.010. http://www.sciencedirect.com/science/article/pii/S1361841516301840

    Article  Google Scholar 

  32. Tanner JM, Whitehouse R, Marshall W, Healty M, Goldstein H (1975) Assessment of skeleton maturity and maturity and prediction of adult height (TW2 Method)

  33. Tanner J, Healy M, Goldstein H, Cameron N (2001) Assessment of skeletal maturity and prediction of adult height: TW3 Method, Saunders

  34. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The bonexpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1):52–66. https://doi.org/10.1109/TMI.2008.926067

    Article  Google Scholar 

  35. Tristán A, Arribas JI (2005) A radius and ulna skeletal age assessment system. In: IEEE Workshop on Machine Learning for Signal Processing, 2005. IEEE, pp 221–226

  36. Tristan-Vega A, Arribas JI (2008) A radius and ulna TW3 bone age assessment system. IEEE Trans Biomed Eng 55(5):1463–1476

    Article  Google Scholar 

  37. UNICEF (2011) The situation of children in India: a profile. New Delhi: United Nations Children’s Fund/India

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyas Simu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simu, S., Lal, S. A framework for automated bone age assessment from digital hand radiographs. Multimed Tools Appl 79, 15747–15764 (2020). https://doi.org/10.1007/s11042-020-08816-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08816-7

Keywords

Navigation